RESEARCH

The single most comprehensive and unified source of information about mathematical functions.

BesselYZero

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Zeros of the Bessel function of the second kind

Traditional notation

 $y_{v,k}$

Mathematica StandardForm notation

BesselYZero[v, k]

Primary definition

03.26.02.0001.01

 $Y_{\nu}(z) = 0 /; z = y_{\nu,k} \wedge \nu \in \mathbb{R} \wedge k \in \mathbb{N}^+$

Numbers $y_{v,k}/; k \in \mathbb{N}^+$ form an ascending sequence of zeros of Bessel function of the second kind $Y_v(z)$ with real v located on the positive real axis $(y_{v,k}$ is the kth root of the equation $Y_v(z) = 0$).

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.