Introductions to ArithmeticGeometricMean

Introduction to the Arithmetic-Geometric Mean

General

The arithmetic-geometric mean appeared in the works of J. Landen (1771, 1775) and J.-L. Lagrange (1784-1785) who defined it through the following quite-natural limit procedure:

$$
\begin{aligned}
& \operatorname{agm}(a, b)=\lim _{n \rightarrow \infty} a_{n}==\lim _{n \rightarrow \infty} b_{n} / ; a_{0}==a>b_{0}=b>0 \bigwedge \\
& a_{n+1}=\frac{1}{2}\left(a_{n}+b_{n}\right)==\operatorname{agm}\left(a_{0}, b_{0}\right) \vartheta_{3}\left(0, z^{2^{n+1}}\right)^{2} \bigwedge b_{n+1}==\sqrt{a_{n} b_{n}}=\operatorname{agm}\left(a_{0}, b_{0}\right) \vartheta_{4}\left(0, z^{z^{n+1}}\right)^{2} \bigwedge z=q\left(1-\left(\frac{b_{0}}{a_{0}}\right)^{2}\right) .
\end{aligned}
$$

C. F. Gauss $(1791-1799,1800,1876)$ continued to research this limit and in 1800 derived its representation through the hypergeometric function ${ }_{2} F_{1}(a, b ; c ; z)$.

Definition of arithmetic-geometric mean

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ is defined through the reciprocal value of the complete elliptic integral $K(z)$ by the formula:

$$
\operatorname{agm}(a, b)==\frac{\pi(a+b)}{4 K\left(\left(\frac{a-b}{a+b}\right)^{2}\right)}
$$

A quick look at the arithmetic-geometric mean

Here is a quick look at the graphic for the arithmetic-geometric mean over the real $a-b$-plane.

- GraphicsArray -

Connections within the arithmetic-geometric mean group and with other function groups
Representations through more general functions

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ can be represented through the reciprocal function of the particular cases of hypergeometric and Meijer G functions:
$\operatorname{agm}(a, b)=\frac{a+b}{2{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1 ;\left(\frac{a-b}{a+b}\right)^{2}\right)}$
$\operatorname{agm}(a, b)=\frac{\pi(a+b)}{2} / G_{2,2}^{1,2}\left(-\left(\frac{a-b}{a+b}\right)^{2} \left\lvert\, \begin{array}{c}\frac{1}{2}, \frac{1}{2} \\ 0,0\end{array}\right.\right)$.

Representations through related equivalent functions

The definition of the arithmetic-geometric mean $\operatorname{agm}(a, b)$ can be interpreted as a representation of agm (a, b) through related equivalent functions-the reciprocal of the complete elliptic integral $K(z)$ with $z=\left(\frac{a-b}{a+b}\right)^{2}$:

$$
\operatorname{agm}(a, b)==\frac{\pi(a+b)}{4 K\left(\left(\frac{a-b}{a+b}\right)^{2}\right)}
$$

The best-known properties and formulas for the arithmetic-geometric mean

Values in points

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ can be exactly evaluated in some points, for example:

$$
\begin{aligned}
& \operatorname{agm}(a, a)=a \\
& \operatorname{agm}(0, b)==0 \\
& \operatorname{agm}(1, b)==\frac{\pi}{2 K\left(1-b^{2}\right)} \\
& \operatorname{agm}(a, \sqrt{2} a)==a \sqrt{\frac{2}{\pi}} \Gamma\left(\frac{3}{4}\right)^{2} \\
& \operatorname{agm}\left(1, \frac{\vartheta_{4}(0, z)^{2}}{\vartheta_{3}(0, z)^{2}}\right)==\frac{1}{\vartheta_{3}(0, z)^{2}} / ;-1<z<1
\end{aligned}
$$

$\operatorname{agm}(1, \infty)=\infty$.

Real values for real arguments

For real values of arguments a, b (with $a b>0$), the values of the arithmetic-geometric mean agm (a, b) are real.

Analyticity

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ is an analytical function of a and b that is defined over \mathbb{C}^{2}.
Poles and essential singularities
The arithmetic-geometric mean $\operatorname{agm}(a, b)$ does not have poles and essential singularities.

Branch points and branch cuts

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ on the $\frac{a}{b}$-plane has two branch points: $\frac{a}{b}=0$ and $\frac{a}{b}=\tilde{\infty}$. It is a single-valued function on the $\frac{a}{b}$-plane cut along the interval $(-\infty, 0)$, where it is continuous from above:

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow+0} \operatorname{agm}(a+i \epsilon, 1)==\operatorname{agm}(a, 1) / ; a<0 \\
& \lim _{\epsilon \rightarrow+0} \operatorname{agm}(a-i \epsilon, 1)=a \operatorname{agm}\left(1, \frac{1}{a}\right) / ; a<0 .
\end{aligned}
$$

Periodicity

The arithmetic-geometric mean agm (a, b) does not have periodicity.

Parity and symmetries

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ is an odd function and has mirror and permutation symmetry:
$\operatorname{agm}(-a,-b)=-\operatorname{agm}(a, b) / ; a \notin \mathbb{R} \wedge b \notin \mathbb{R}$
$\operatorname{agm}(\bar{a}, \bar{b})=\overline{\operatorname{agm}(a, b)} / ; \frac{a}{b} \notin(-\infty, 0)$
$\operatorname{agm}(b, a)==\operatorname{agm}(a, b)$.
The arithmetic-geometric mean $\operatorname{agm}(a, b)$ is the homogenous function:
$\operatorname{agm}(c a, c b)==c \operatorname{agm}(a, b) / ; c>0$.

Series representations

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ has the following series representations at the points $\frac{b}{a} \rightarrow 0, \frac{b}{a} \rightarrow 1$, and $\left|\frac{b}{a}\right| \rightarrow \infty:$
$\operatorname{agm}(a, b) \propto \frac{\pi a}{2\left(\log (4)-\log \left(\frac{b}{a}\right)\right)}+\frac{\pi\left(\log \left(\frac{b}{4 a}\right)+1\right) b^{2}}{8 a\left(\log (4)-\log \left(\frac{b}{a}\right)\right)^{2}}+\ldots / ;\left(\frac{b}{a} \rightarrow 0\right)$
$\operatorname{agm}(a, b) \propto a+\frac{b-a}{2}-\frac{(b-a)^{2}}{16 a}+\ldots / ;\left(\frac{b}{a} \rightarrow 1\right)$
$\operatorname{agm}(a, b) \propto \frac{\pi b}{2 \log \left(\frac{4 b}{a}\right)}+\frac{\pi a^{2}\left(1-\log \left(\frac{4 b}{a}\right)\right)}{8 b \log ^{2}\left(\frac{4 b}{a}\right)}+\ldots / ;\left(\left|\frac{b}{\frac{b}{a}}\right| \rightarrow \infty\right)$.

Product representation

The arithmetic-geometric mean agm $(1, b)$ has the following infinite product representation:
$\operatorname{agm}(1, b)==\prod_{k=0}^{\infty} \frac{1}{2}\left(q_{k}+1\right) / ; q_{0}=b \bigwedge q_{k+1}==\frac{2 \sqrt{q_{k}}}{q_{k}+1}$.

Integral representation

The arithmetic-geometric mean agm (a, b) has the following integral representation:
$\operatorname{agm}(a, b)==\frac{\pi}{2} / \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{a^{2} \cos ^{2}(t)+b^{2} \sin ^{2}(t)}} d t / ; a>0 \wedge b>0$.

Limit representation

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ has the following limit representation, which is often used for the definition of $\operatorname{agm}(a, b)$:
$\operatorname{agm}(a, b)==\lim _{n \rightarrow \infty} a_{n}==\lim _{n \rightarrow \infty} b_{n} / ; a_{0}==a>b_{0}==b>0 \bigwedge$

$$
a_{n+1}==\frac{1}{2}\left(a_{n}+b_{n}\right)==\operatorname{agm}\left(a_{0}, b_{0}\right) \vartheta_{3}\left(0, z^{2^{n+1}}\right)^{2} \bigwedge b_{n+1}==\sqrt{a_{n} b_{n}}==\operatorname{agm}\left(a_{0}, b_{0}\right) \vartheta_{4}\left(0, z^{2^{n+1}}\right)^{2} \bigwedge z==q\left(1-\left(\frac{b_{0}}{a_{0}}\right)^{2}\right) .
$$

Transformations

The homogeneity property of the arithmetic-geometric mean agm (a, b) leads to the following transformations:
$\operatorname{agm}(a, b)=a \operatorname{agm}\left(1, \frac{b}{a}\right) / ; a>0$
$\operatorname{agm}(c a, c b)==c \operatorname{agm}(a, b) / ; c>0$
$\operatorname{agm}(-a,-b)==-\operatorname{agm}(a, b) / ; a \notin \mathbb{R} \bigwedge b \notin \mathbb{R}$
$\operatorname{agm}(1, z)==\frac{1}{a} \operatorname{agm}(a, a z) / ; a>0$.
Another group of transformations is based on the first of the following properties:
$\operatorname{agm}\left(\frac{a+b}{2}, \sqrt{a b}\right)=\operatorname{agm}(a, b)$
$\operatorname{agm}\left(1, \sqrt{1-z^{2}}\right)==\operatorname{agm}(z+1,1-z)$
$\operatorname{agm}\left(1, \frac{2 \sqrt{b}}{b+1}\right)=\frac{2}{b+1} \operatorname{agm}(1, b)$.

Representations of derivatives

The first derivatives of the arithmetic-geometric mean $\operatorname{agm}(a, b)$ have rather simple representations:
$\frac{\partial \operatorname{agm}(a, b)}{\partial a}==\frac{\operatorname{agm}(a, b)}{a(a-b) \pi}\left(a \pi-2 \operatorname{agm}(a, b) E\left(\frac{(a-b)^{2}}{(a+b)^{2}}\right)\right)$
$\frac{\partial \operatorname{agm}(a, b)}{\partial b}=\frac{\operatorname{agm}(a, b)}{(a-b) b \pi}\left(2 \operatorname{agm}(a, b) E\left(\frac{(a-b)^{2}}{(a+b)^{2}}\right)-b \pi\right)$
The $n^{\text {th }}$-order symbolic derivatives are much more complicated. Here is an example:

$$
\begin{aligned}
& \frac{\partial^{n} \operatorname{agm}(a, b)}{\partial a^{n}}=\operatorname{agm}(a, b) \delta_{n}+\frac{\pi}{4 b^{n}}\left(\frac{b \delta_{n-1}}{K\left(\left(\frac{a-b}{a+b}\right)^{2}\right)}+b n n!\sum_{q=1}^{n-1} \frac{(-1)^{q}}{(q+1)!(n-q-1)!} K\left(\left(\frac{a-b}{a+b}\right)^{2}\right)^{-q-1}\right. \\
& \sum_{k_{1}=0}^{n-\sum_{j=1}^{p} k_{j}-1} \sum_{k_{2}=0}^{n-\sum_{j=1}^{p} k_{j}-1} \cdots \sum_{k_{q-1}=0}^{n-\sum_{j=1}^{p} k_{j}-1}\left(\prod_{p=1}^{q-1}\binom{n-\sum_{j=1}^{p-1} k_{j}-1}{k_{p}}\right)\left(\begin{array}{l}
q-1 \\
i=1
\end{array} A\left(k_{i}, a, b\right)\right) A\left(n-\sum_{j=1}^{q-1} k_{j}-1, a, b\right)+ \\
& (a+b)(n+1)!\sum_{q=1}^{n} \frac{(-1)^{q}}{(q+1)!(n-q)!} K\left(\left(\frac{a-b}{a+b}\right)^{2}\right)^{-q-1} \sum_{k_{1}=0}^{n-\sum_{j=1}^{p} k_{j} n-\sum_{j=1}^{p} k_{k}=0} \cdots \\
& \left.\sum_{k_{q-1}=0}^{n-\sum_{j=1}^{p} k_{j}}\left(\prod_{p=1}^{q-1}\binom{n-\sum_{j=1}^{p-1} k_{j}}{k_{p}}\right)\left(\prod_{i=1}^{q-1} A\left(k_{i}, a, b\right)\right) A\left(n-\sum_{j=1}^{q-1} k_{j}, a, b\right)\right) / ; A(r, a, b)=K\left(\left(\left(\frac{a-b}{a+b}\right)^{2}\right) \delta_{r}+\right. \\
& \frac{\pi}{2} \sum_{m=1}^{r} \frac{1}{m!} \sum_{s=0}^{m} \frac{1}{(m-s)!2^{m-2 s}}\left((2 s-m+1)_{2(m-s)}\left(\frac{a+b}{a-b}\right)^{m}{ }_{2} \tilde{F}_{1}\left(\frac{1}{2}, \frac{1}{2} ; 1-s ;\left(\frac{a-b}{a+b}\right)^{2}\right) \sum_{q=0}^{m}(-1)^{q}\binom{m}{q}\left(\frac{a-b}{a+b}\right)^{q}\right. \\
& \left.\sum_{u_{1}=0}^{r} \sum_{u_{2}=0}^{r} \ldots \sum_{u_{m-q}=0}^{r} \delta_{r, \sum_{i=1}^{m-q} u_{i}}\left(u_{1}+u_{2}+\ldots+u_{m-q} ; u_{1}, u_{2}, \ldots, u_{m-q}\right) \prod_{i=1}^{m-q}\left(\delta_{u_{i}}-\frac{2(-1)^{u_{i}} b^{u_{i}+1} u_{i}!}{(a+b)^{u_{i}+1}}\right)\right) / ; n \in \mathbb{N} .
\end{aligned}
$$

Differential equations

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ satisfies the following second-order ordinary nonlinear differential equation:
$2 a\left(b^{2}-a^{2}\right)\left(\frac{\partial w(a)}{\partial a}\right)^{2}-a w(a)^{2}+\left(\left(3 a^{2}-b^{2}\right) \frac{\partial w(a)}{\partial a}+a\left(a^{2}-b^{2}\right) \frac{\partial^{2} w(a)}{\partial a^{2}}\right) w(a)=0 / ; w(a)==\operatorname{agm}(a, b)$.
It can also be represented as partial solutions of the following partial differential equation:
$\operatorname{agm}(a, b)-a \frac{\partial \operatorname{agm}(a, b)}{\partial a}-b \frac{\partial \operatorname{agm}(a, b)}{\partial b}==0$.

Inequalities

The arithmetic-geometric mean $\operatorname{agm}(a, b)$ lies between the middle geometric mean and middle arithmetic mean, which is shown in the following famous inequality:

$$
\sqrt{a b} \leq \operatorname{agm}(a, b) \leq \frac{a+b}{2}
$$

Applications of the arithmetic-geometric mean

Applications of the arithmetic-geometric mean include fast high-precision computation of $\pi, \log (z), e^{z}, \sin (z), \cos (z)$, and so on.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:
http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.
e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.
© 2001-2008, Wolfram Research, Inc.

