
Introductions to Gamma
Introduction to the gamma functions

General

The gamma function GHzL is applied in exact sciences almost as often as the well-known factorial symbol n!. It was

introduced by the famous mathematician L. Euler (1729) as a natural extension of the factorial operation n! from

positive integers n to real and even complex values of this argument. This relation is described by the formula:

GHnL = Hn - 1L !.

Euler derived some basic properties and formulas for the gamma function. He started investigations of n! from the

infinite product:
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The gamma function GHzL has a long history of development and numerous applications since 1729 when Euler

derived his famous integral representation of the factorial function. In modern notation it can be rewritten as the

following:
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Τn ã-Τ â Τ �; ReHnL > -1.

The history of the gamma function is described in the subsection "General" of the section "Gamma function."

Since the famous work of J. Stirling (1730) who first used series for logHn!L to derive the asymptotic formula for

n!, mathematicians have used the logarithm of the gamma function logHGHzLL for their investigations of the gamma

function GHzL.  Investigators  of  mention include:  C.  Siegel,  A.  M.  Legendre,  K.  F.  Gauss,  C.  J.  Malmstén,  O.

Schlömilch, J. P. M. Binet (1843), E. E. Kummer (1847), and G. Plana (1847).  M. A. Stern (1847) proved conver-

gence of the Stirling's series for the derivative of logHGHzLL. C. Hermite (1900) proved convergence of the Stirling's

series for logHGHz + 1LL if z is a complex number.

During the twentieth century,  the function log(G(z))  was used in many works where the gamma function was

applied or investigated. The appearance of computer systems at the end of the twentieth century demanded more

careful attention to the structure of branch cuts for basic mathematical functions to support the validity of the

mathematical  relations everywhere in the complex plane.  This  lead to the appearance of a special  log-gamma

function logGHzL, which is equivalent to the logarithm of the gamma function logHGHzLL as a multivalued analytic

function, except that it is conventionally defined with a different branch cut structure and principal sheet. The log-

gamma function logGHzL was introduced by J. Keiper (1990) for Mathematica. It allows a concise formulation of

many identities related to the Riemann zeta function ΖHzL.



The importance of the gamma function and its Euler integral stimulated some mathematicians to study the incom-

plete Euler integrals, which are actually equal to the indefinite integral of the expression Τn ã-Τ. They were intro-

duced in  an  article  by  A.  M.  Legendre (1811).  Later,  P.  Schlömilch (1871) introduced the name "incomplete

gamma function" for such an integral. These functions were investigated by J. Tannery (1882), F. E. Prym (1877),

and M. Lerch (1905) (who gave a series representation for the incomplete gamma function). N. Nielsen (1906) and

other mathematicians also had special interests in these functions, which were included in the main handbooks of

special functions and current computer systems like Mathematica.

The needs of computer systems lead to the implementation of slightly more general incomplete gamma functions

and their regularized and inverse versions. In addition to the classical gamma function GHzL, Mathematica includes

the following related set of gamma functions: incomplete gamma function GHa, zL, generalized incomplete gamma

function GHa, z1, z2L, regularized incomplete gamma function QHa, zL, generalized regularized incomplete gamma

function QHa, z1, z2L, log-gamma function logGHzL, inverse of the regularized incomplete gamma function Q-1Ha, zL,
and inverse of the generalized regularized incomplete gamma function Q-1Ha, z1, z2L.

Definitions of gamma functions

The gamma function GHzL,  the incomplete gamma function GHa, zL,  the generalized incomplete gamma function

GHa, z1, z2L,  the regularized incomplete gamma function QHa, zL,  the generalized regularized incomplete gamma

function QHa, z1, z2L, the log-gamma function (almost equal to the logarithm of the gamma function) logGHzL, the

inverse of the regularized incomplete gamma function Q-1Ha, zL,  and the inverse of the generalized regularized

incomplete gamma function Q-1Ha, z1, z2L are defined by the following formulas:
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The function logGHzL is equivalent to logHGHzLL as a multivalued analytic function, except that it is conventionally

defined with a different branch cut structure and principal sheet. The function logGHzL allows a concise formulation

of many identities related to the Riemann zeta function ΖHzL:
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z � QHa, wL �; w � Q-1Ha, zL
z2 � QHa, z1, wL �; w � Q-1Ha, z1, z2L.
The previous functions comprise the interconnected group called the gamma functions.

Instead of the first three previous classical definitions using definite integrals, the other equivalent definitions with

infinite series can be used.

A quick look at the gamma functions

Here is a quick look at graphics for the gamma function and the function logGHzL along the real axis. The real parts

are shown in red and the imaginary parts are shown in blue.
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Here is a quick look at the graphics for the gamma function and the function logGHzL along the real axis.
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These two graphics show the real part (left) and imaginary part (right) of GHa, zL over the a-z–plane.
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The next graphic shows the regularized incomplete gamma function QHa, zL over the a-z-plane.
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Connections within the group of gamma functions and with other function groups

Representations through more general functions

The incomplete gamma functions GHa, zL,  GHa, z1, z2L,  QHa, zL,  and QHa, z1, z2L  are particular cases of the more

general hypergeometric and Meijer G functions.

For example, they can be represented through hypergeometric functions 1F1  and 1F
�

1  or the Tricomi confluent

hypergeometric function U:

GHa, zL � GHaL I1 - za
1F

�
1Ha; a + 1; -zLM �; -a Ï N

GHa, zL � GHaL -
za

a
1F1Ha; a + 1; -zL �; -a Ï N

GHa, zL � ã-z UH1 - a, 1 - a, zL
GHa, z1, z2L � GHaL Iz2

a
1F

�
1Ha; a + 1; -z2L - z1

a
1F

�
1Ha; a + 1; -z1LM �; -a Ï N
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GHa, z1, z2L �
z2

a

a
 1F1Ha; a + 1; -z2L -

z1
a

a
 1F1Ha; a + 1; -z1L �; -a Ï N

GHa, z1, z2L � ã-z1 UH1 - a, 1 - a, z1L - ã-z2 UH1 - a, 1 - a, z2L
QHa, zL � 1 - za

1F
�

1Ha; a + 1; -zL �; -a Ï N+

QHa, zL � 1 -
za

GHa + 1L  1F1Ha; a + 1; -zL �; -a Ï N+

QHa, zL �
1

GHaL  ã-z UH1 - a, 1 - a, zL
QHa, z1, z2L � z2

a
1F

�
1Ha; a + 1; -z2L - z1

a
1F

�
1Ha; a + 1; -z1L

QHa, z1, z2L �
z2

a

GHa + 1L 1F1Ha; a + 1; -z2L -
z1

a

GHa + 1L  1F1Ha; a + 1; -z1L �; -a Ï N

QHa, z1, z2L �
1

GHaL  Hã-z1 UH1 - a, 1 - a, z1L - ã-z2 UH1 - a, 1 - a, z2LL.
These functions also have rather simple representations in terms of classical Meijer G functions:

G Ha, zL � G1,2
2,0 z

1

0, a

GHa, z1, z2L � G1,2
1,1 z2

1

a, 0
- G1,2

1,1 z1
1

a, 0

QHa, zL �
1

GHaL  G1,2
2,0 z

1

0, a

QHa, z1, z2L �
1

GHaL  G1,2
1,1 z2

1

a, 0
- G1,2

1,1 z1
1

a, 0
.

The  log-gamma  function  logGHzL  can  be  expressed  through  polygamma  and  zeta  functions  by  the  following

formulas:

logG HzL � à
1

z

ΨHtL â t

logGHzL �
¶-Ν-1 ΨHΝLHzL

¶z-Ν-1

logGHzL �
1

2
logH2 ΠL + ΖH1,0LH0, zL �; ReHzL > 0.

Representations through related equivalent functions

The gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, and QHa, z1, z2L can be represented using the related exponential

integral EΝHzL by the following formulas:

GHa, zL � za E1-aHzL
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GHa, z1, z2L � z1
a E1-aHz1L - z2

a E1-aHz2L
QHa, zL �

za E1-aHzL
GHaL

QHa, z1, z2L �
1

GHaL  Hz1
a E1-aHz1L - z2

a E1-aHz2LL.
Relations to inverse functions

The gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, and QHa, z1, z2L are connected with the inverse of the regularized

incomplete gamma function Q-1Ha, zL and the inverse of the generalized regularized incomplete gamma function

Q-1Ha, z1, z2L by the following formulas:

GIa, Q-1Ha, zLM � GHaL z

GIa, z1, Q-1Ha, z1, z2LM � GHaL z2

QIa, Q-1Ha, zLM � z

QIa, z1, Q-1Ha, z1, z2LM � z2

Q-1Ha, QHa, z1L - z2L � Q-1Ha, z1, z2L
Q-1Ha, z1, z2L � Q-1Ha, QHa, z1L - z2L.
Representations through other gamma functions

The gamma functions GHaL, GHa, zL, GHa, z1, z2L, QHa, zL, QHa, z1, z2L, and logGHzL are connected with each other by

the formulas:

GHaL � GHa, 0L �; ReHaL > 0

GHa, zL � GHaL + GHa, z, 0L �; ReHaL > 0

GHa, zL � GHaL HQHa, z, 0L + 1L �; ReHaL > 0

GHa, zL � GHaL QHa, zL
GHa, z1, z2L � GHa, z1L - GHa, z2L
GHa, z1, z2L � GHaL QHa, z1, z2L
QHa, zL �

GHa, z, 0L
GHaL + 1 �; ReHaL > 0

QHa, zL � QHa, z, 0L + 1 �; ReHaL > 0

QHa, zL �
GHa, zL

GHaL
QHa, z1, z2L � QHa, z1L - QHa, z2L
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QHa, z1, z2L �
GHa, z1, z2L

GHaL
logGHzL � logHGHzLL �; 0 < ReHzL £ 2 í  ImHzL¤ £

7

2

logGHzL � 2 ä Π kHzL + logHGHzLL �; kHzL � à
0

z

ΘH-ReHGHtLLL  ImHGHtL ΨHtLL¤ ∆HImHGHtLLL â t Î Z.

The best-known properties and formulas for exponential integrals

Real values for real arguments

For real values of z, the values of the gamma function GHzL are real (or infinity). For real values of the parameter a

and positive arguments z, z1, z2, the values of the gamma functions GHa, zL, GHa, z1, z2L, Q Ha, zL, QHa, z1, z2L, and

logGHzL are real (or infinity). 

Simple values at zero

The gamma functions GHzL, GHa, zL, GHa, z1, z2L, Q Ha, zL, QHa, z1, z2L, logGHzL, Q-1Ha, zL, and Q-1Ha, z1, z2L have the

following values at zero arguments:

GH0L � ¥�

GH0, 0L � ¥�

GH0, 0, 0L � È

QH0, 0L � 0

QH0, 0, 0L � 0

logGH0L � ¥

Q-1H0, 0L � 0

Q-1H0, 0, 0L � 0.

Specific values for specialized variables

If the variable z is equal to 0 and Re HaL > 0, the incomplete gamma function GHa, zL coincides with the gamma

function GHaL and the corresponding regularized gamma function QHa, zL is equal to 1:

G Ha, 0L � GHaL �; ReHaL > 0 Q Ha, 0L � 1 �; ReHaL > 0.

In  cases  when the parameter  a  equals  1, 2, 3, ¼,  the  incomplete gamma functions GHa, zL  and QHa, zL  can be

expressed  as  an  exponential  function  multiplied  by  a  polynomial.  In  cases  when  the  parameter  a  equals

0, -1, -2, ¼, the incomplete gamma function GHa, zL can be expressed with the exponential integral Ei HzL, exponen-

tial, and logarithmic functions, but the regularized incomplete gamma function QHa, zL is equal to 0. In cases when

the parameter a  equals ± 1
2
, ± 3

2
, ± 5

2
, ¼,  the incomplete gamma functions GHa, zL  and QHa, zL  can be expressed

through the complementary error function erfcHzL and the exponential function, for example:
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G H1, zL � ã-z Q H1, zL � ã-z

G H0, zL � -EiH-zL + 1

2
JlogH-zL - logJ- 1

z
NN - log HzL Q H0, zL � 0

G H-1, zL � EiH-zL + 1

2
JlogJ- 1

z
N - logH-zLN + logHzL + ã-z

z
Q H-1, zL � 0

G J 1

2
, zN � Π erfc I z N Q J 1

2
, zN � erfc I z

G J- 1

2
, zN � 2 ã-z

z
- 2 Π erfcI z N Q J- 1

2
, zN � erfcI z N - ã-z

Π z
.

These formulas are particular cases of the following general formulas:

GHn, zL �
H-1Ln-1

H-nL !
 EiH-zL -

1

2
logH-zL - log -

1

z
+ logHzL + ã-z â

k=0

n-1 zk

HnLk-n+1

- ã-z â
k=n

-1 zk

HnLk-n+1

�; n Î Z

G n +
1

2
, z � erfcI z N G n +

1

2
+ ã-z â

k=0

n-1 zk+
1

2

Jn + 1

2
N
k-n+1

- ã-z â
k=n

-1 zk+
1

2

Jn + 1

2
N
k-n+1

�; n Î Z

QHn, zL � ã-z â
k=0

n-1 zk

k !
�; n Î N+

QH-n, zL � 0 �; n Î N

Q n +
1

2
, z � erfcI z N +

1

GJn + 1

2
N  ã-z â

k=0

n-1 zk+
1

2

Jn + 1

2
N
k-n+1

- ã-z â
k=n

-1 zk+
1

2

Jn + 1

2
N
k-n+1

�; n Î Z.

If the argument z > 0, the log-gamma function logGHzL can be evaluated at these points where the gamma function

can be evaluated in closed form. The log-gamma function logGHzL can also be represented recursively in terms of

GHzL for 0 < Re HzL < 1:

logGH1L � 0

logGHnL � logHHn - 1L !L �; n Î N+

logGK n

2
O � log

21-n Π Hn - 1L !

n-1

2
!

�; n Î N

logGH-nL � ¥ �; n Î N

logG
p

q
+ n � log G

p

q
- n logHqL + â

k=1

n

logHp + k q - qL �; n Î N ì p Î N+ ì q Î N+ ì p < q

logG
p

q
- n � log G

p

q
+ logHqL n - Π ä n - â

k=1

n

logHq k - pL �; n Î N ì p Î N+ ì q Î N+ ì p < q.

The generalized incomplete gamma functions GHa, z1, z2L and QHa, z1, z2L  in particular cases can be represented

through incomplete gamma functions GHa, zL and QHa, zL and the gamma function GHaL:
GHa, z1, 0L � GHa, z1L - GHaL �; ReHaL > 0
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GHa, 0, z2L � GHaL - GHa, z2L �; ReHaL > 0

GHa, z1, ¥L � GHa, z1L
GHa, ¥, z2L � -GHa, z2L
GHa, 0, ¥L � GHaL �; ReHaL > 0

QH-n, z1, z2L � 0 �; n Î N

QHa, z1, ¥L � QHa, z1L
QHa, 0, ¥L � 1 �; ReHaL > 0

QHa, z1, 0L � QHa, z1L - 1 �; ReHaL > 0

QHa, 0, z2L � 1 - QHa, z2L �; ReHaL > 0.

The inverse of the regularized incomplete gamma functions Q-1Ha, zL and Q-1Ha, z1, z2L for particular values of

arguments satisfy the following relations:

Q-1Ha, 0L � ¥ �; a > 0

Q-1Ha, 1L � 0 �; a > 0

Q-1Ha, ¥, zL � Q-1Ha, -zL.
Analyticity

The gamma functions GHzL, GHa, zL, GHa, z1, z2L, QHa, zL, QHa, z1, z2L, and logGHzL are defined for all complex values

of their arguments.  

The functions GHa, zL and Q Ha, zL are analytic functions of a and z over the whole complex a- and z-planes exclud-

ing  the  branch  cut  on  the  z-plane.  For  fixed  z,  they  are  entire  functions  of  a.  The  functions  GHa, z1, z2L  and

QHa, z1, z2L  are analytic functions of a,  z1,  and z2  over the whole complex a-,  z1-,  and z2-planes excluding the

branch cuts on the z1- and z2-planes. For fixed z1 and z2, they are entire functions of a.

The function logGHzL is an analytical function of z over the whole complex z-plane excluding the branch cut.

Poles and essential singularities

For fixed a, the functions GHa, zL and Q Ha, zL have an essential singularity at z � ¥� . At the same time, the point

z � ¥�  is a branch point for generic a. For fixed z, the functions GHa, zL and Q Ha, zL have only one singular point at

a = ¥� . It is an essential singularity. 

For fixed a, the functions GHa, z1, z2L and QHa, z1, z2L have an essential singularity at z1 � ¥�  (for fixed z2) and at

z2 � ¥�  (for fixed z1). At the same time, the points zk � ¥� �; k � 1, 2 are branch points for generic a. For fixed z1

and z2, the functions GHa, z1, z2L and QHa, z1, z2L have only one singular point at a = ¥� . It is an essential singular-

ity. 

The function logGHzL does not have poles or essential singularities.
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Branch points and branch cuts

For fixed a, not a positive integer, the functions GHa, zL and Q Ha, zL have two branch points: z � 0 and z � ¥� .

For fixed a, not a positive integer, the functions GHa, zL and Q Ha, zL are single-valued functions on the z-plane cut

along the interval H-¥, 0L, where they are continuous from above:

lim
Ε®+0

GHa, x + ä ΕL � GHa, xL �; x < 0

lim
Ε®+0

GHa, x - ä ΕL � GHaL - ã-2 ä Π a HGHaL - GHa, xLL �; x < 0

lim
Ε®+0

QHa, x + ä ΕL � QHa, xL �; x < 0

lim
Ε®+0

QHa, x - ä ΕL � 1 - ã-2 ä Π a H1 - QHa, xLL �; x < 0.

For fixed z, the functions GHa, zL and Q Ha, zL do not have branch points and branch cuts.

For fixed a, z1 or fixed a, z2 (with a Ï N+), the functions GHa, z1, z2L and QHa, z1, z2L have two branch points with

respect to z2 or z1: zk � 0, zk � ¥� , k = 1, 2. 

For fixed z1  and  a Ï N+, the functions GHa, z1, z2L and QHa, z1, z2L are single-valued functions on the z2-plane cut

along the interval H-¥, 0L, where they are continuous from above:

lim
Ε®+0

GHa, z1, x2 + ä ΕL � GHa, z1, x2L �; x2 < 0

lim
Ε®+0

GHa, z1, x2 - ä ΕL � GHa, z1, x2L + I1 - ã-2 ä Π aM GHa, x2, 0L �; x2 < 0

lim
Ε®+0

QHa, z1, x2 + ä ΕL � QHa, z1, x2L �; x2 < 0

lim
Ε®+0

QHa, z1, x2 - ä ΕL � QHa, z1, x2L + I1 - ã-2 ä Π aM QHa, x2, 0L �; x2 < 0.

For fixed z2  and  a Ï N+, the functions GHa, z1, z2L and QHa, z1, z2L are single-valued functions on the z1-plane cut

along the interval H-¥, 0L, where they are continuous from above:

lim
Ε®+0

GHa, x1 + ä Ε, z2L � GHa, x1, z2L �; x1 < 0

lim
Ε®+0

GHa, x1 - ä Ε, z2L � I1 - ã-2 ä Π aM GHa, 0, x1L + GHa, x1, z2L �; x1 < 0

lim
Ε®+0

QHa, x1 + ä Ε, z2L � QHa, x1, z2L �; x1 < 0

lim
Ε®+0

QHa, x1 - ä Ε, z2L � I1 - ã-2 ä Π aM QHa, 0, x1L + QHa, x1, z2L �; x1 < 0.

For fixed z1 and z2, the functions GHa, z1, z2L and QHa, z1, z2L do not have branch points and branch cuts.

The function logGHzL has two branch points: z � 0 and z = ¥� .
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The function logGHzL is a single-valued function on the z-plane cut along the interval H-¥, 0L, where it is continu-

ous from above:

lim
Ε®+0

logGHx + ä ΕL � logGHxL �; x < 0

lim
Ε®+0

logGHx - ä ΕL � logGHxL - 2 ä Π dxt �; x < 0.

Periodicity

The gamma functions GHzL,  GHa, zL,  GHa, z1, z2L,  QHa, zL,  QHa, z1, z2L,  the log-gamma function logGHzL,  and their

inverses Q-1Ha, zL and Q-1Ha, z1, z2L do not have periodicity.

Parity and symmetry

The gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, QHa, z1, z2L, and the log-gamma function logGHzL have mirror

symmetry (except on the branch cut intervals):

GHa, z�L � GHa, zL �; z Ï H-¥, 0L
GHa, z1, z2L � GHa, z1, z2L �; z1 Ï H-¥, 0L ì z2 Ï H-¥, 0L
QHa, z�L � QHa, zL �; z Ï H-¥, 0L
QHa, z1, z2L � QHa, z1, z2L �; z1 Ï H-¥, 0L ì z2 Ï H-¥, 0L
logGHz�L � logGHzL �; z Ï H-¥, 0L.
Two of the gamma functions have the following permutation symmetry:

GHa, z1, z2L � -GHa, z2, z1L
QHa, z1, z2L � -QHa, z2, z1L.
Series representations

The gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, QHa, z1, z2L, the log-gamma function logGHzL, and the inverse

Q-1Ha, zL have the following series expansions:

GHa, zL µ GHaL -
za

a
 1 -

a z

a + 1
+

a z2

2 Ha + 2L - ¼ �; Hz ® 0L

GHa, zL � GHaL - za â
k=0

¥ H-zLk

Ha + kL k !

GHn, zL � Hn - 1L ! ã-z â
k=0

n-1 zk

k !
�; n Î N+

GH-n, zL �
H-1Ln

n!
 HΨHn + 1L - logHzLL - z-n â

k=0
k¹n

¥ H-zLk

Hk - nL k !
�; n Î N
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GHa, z1, z2L µ z2
a

1

a
-

z2

a + 1
+

z2
2

2 Ha + 2L + ¼ - z1
a

1

a
-

z1

a + 1
+

z1
2

2 Ha + 2L + ¼ �; Hz1 ® 0L ì Hz2 ® 0L

GHa, z1, z2L � z2
a â

k=0

¥ H-z2Lk

Ha + kL k !
- z1

a â
k=0

¥ H-z1Lk

Ha + kL k !

GHn, z1, z2L � Hn - 1L ! ã-z1 â
k=0

n-1 z1
k

k !
- ã-z2 â

k=0

n-1 z2
k

k !
�; n Î N+

GH-n, z1, z2L �
H-1Ln-1

n!
HlogHz1L - logHz2LL + â

k=0
k¹n

¥ H-1Lk  Iz2
k-n - z1

k-nM
Hk - nL k !

�; n Î N

QHa, zL µ 1 - za
1

GHa + 1L -
a z

GHa + 2L +
a Ha + 1L z2

2 GHa + 3L - ¼ �; Hz ® 0L

QHa, zL � 1 - za â
k=0

¥ HaLk H-zLk

GHa + k + 1L k !

QHn, zL � ã-z â
k=0

n-1 zk

k !
�; n Î N+

QHa, z1, z2L µ z2
a

1

GHa + 1L -
a z2

GHa + 2L +
a Ha + 1L z2

2

2 GHa + 3L - ¼ - z1
a

1

GHa + 1L -
a z1

GHa + 2L +
a Ha + 1L z1

2

2 GHa + 3L - ¼ �; Hz1 ® 0L ì Hz2 ® 0L

QHa, z1, z2L � z2
a â

k=0

¥ HaLk H-z2Lk

GHa + k + 1L k !
- z1

a â
k=0

¥ HaLk H-z1Lk

GHa + k + 1L k !

QHn, z1, z2L � ã-z1 â
k=0

n-1 z1
k

k !
- ã-z2 â

k=0

n-1 z2
k

k !
�; n Î N+

logGHzL µ -logHzL - ý z +
Π2 z2

12
-

ΖH3L z3

3
+

Π4 z4

360
- ¼ �; Hz ® 0L

logGHzL � -logHzL - ý z + â
j=0

¥ H-1L j ΖH j + 2L z j+2

j + 2
�;  z¤ < 1

logGHzL µ logGHz0L + ΨHz0L Hz - z0L +
ΖH2, z0L

2
Hz - z0L2 -

ΖH3, z0L
3

Hz - z0L3 + ¼ �; Hz ® z0L ì Ø Hz0 Î Z ì z0 £ 0L

logGHzL � logGHz0L + ΨHz0L Hz - z0L + â
k=0

¥ â
j=0

¥ H-1L j Hz - z0L j+2

H j + 2L Hk + z0L j+2
�; Ø Hz0 Î Z ì z0 £ 0L

logGHzL � -logHz + nL + logG Hz + n + 1L - â
k=0

n-1

logHz + kL �; Hz ® -nL ß n Î N
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logGHzL µ -logHz + nL - â
k=0

n-1

logHz + kL H1 + OHz + nLL �; Hz ® -nL ß n Î N

Q-1Ha, zL � H-Hz - 1L GHa + 1LL1�a +
IH-Hz - 1L GHa + 1LL1�aM2

a + 1
+

H3 a + 5L IH-Hz - 1L GHa + 1LL1�aM3

2 Ha + 1L2 Ha + 2L + OIHz - 1L4�aM.
Asymptotic series expansions

The asymptotic behavior of the gamma functions GHa, zL  and QHa, zL,  the log-gamma function logGHzL,  and the

inverse Q-1Ha, zL can be described by the following formulas (only the main terms of asymptotic expansion are

given):

GHa, zL µ ã-z za-1 1 + O
1

z
�; H z¤ ® ¥L

QHa, zL µ
ã-z za-1

GHaL 1 + O
1

z
�; H z¤ ® ¥L

logGHzL µ z -
1

2
logHzL - z +

logH2 ΠL
2

+
1

12 z
 1 + O

1

z2
�;  ArgHzL¤ < Π ì H z¤ ® ¥L

Q-1Ha, zL µ -Ha - 1L W-1 -
z

1

a-1 GHaL 1

a-1

a - 1
�; Hz ® 0L.

Integral representations

The gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, QHa, z1, z2L, and the log-gamma function logGHzL can also be

represented through the following integrals:

GHa, zL � à
z

¥

ta-1 ã-t  â t

GHa, z1, z2L � à
z1

z2

ta-1 ã-t  â t

QHa, zL �
1

GHaL  à
z

¥

ta-1 ã-t  â t

QHa, z1, z2L �
1

GHaL  à
z1

z2

ta-1 ã-t  â t

logGHzL � -à
0

¥ ã-t

t
 

ãt z - 1

1 - ã-t
- z  â t + logHΠL - logHsinHΠ zLL �; ReHzL < 1

logGHzL � à
0

¥ 1

t
 Hz - 1L ã-t +

ã-t z - ã-t

1 - ã-t
 â t �; ReHzL > 0

logGHzL � 2 à
0

¥ tan-1J t

z
N

ã2 Π t - 1
 â t +

logH2 ΠL
2

+ z -
1

2
logHzL - z �; ReHzL > 0.
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Transformations

The argument of the log-gamma function logGHa - zL can be simplified if a � 1 or 0:

logGH1 - zL � logHΠL - logHsinHΠ zLL - logGHzL �; -
1

2
£ ReHzL <

Π

2

logGH1 - zL � logHΠL - logHsinHΠ zLL - logGHzL + 2 ä Π
2 ReHzL + 1

4
IsgnHImHzLL + IsgnHImHzLL2 - 1M sgnHReHzLLM �; 2 ReHzL + 1

4
Ï Z

logGH-zL � logHΠL - logH-zL - logHsinHΠ zLL - logGHzL �; -
1

2
£ ReHzL <

Π

2

logGH-zL � logHΠL - logH-zL - logHsinHΠ zLL - logGHzL + 2 ä Π
2 ReHzL + 1

4
IsgnHImHzLL + IsgnHImHzLL2 - 1M sgnHReHzLLM �;

2 ReHzL + 1

4
Ï Z.

Multiple arguments

The  log-gamma function  logGHm zL  with  m � 2, 3, ¼  can  be  represented  by  a  formula  that  follows  from the

corresponding multiplication formula for the gamma function GHzL:
logGH2 zL � logG z +

1

2
+ logGHzL + H2 z - 1L logH2L -

logHΠL
2

logGHm zL � â
k=0

m-1

logG z +
k

m
+ m z logHmL -

1

2
HlogHmL + Hm - 1L log H2 ΠLL �; m Î N+.

Identities

The gamma functions GHa, zL,  GHa, z1, z2L,  QHa, zL,  QHa, z1, z2L,  and the log-gamma function logGHzL  satisfy the

following recurrence identities:

GHa, zL �
1

a
 HGHa + 1, zL - ã-z zaL

GHa, zL � Ha - 1L GHa - 1, zL + ã-z za-1

GHa, z1, z2L �
1

a
 HGHa + 1, z1, z2L - ã-z1 z1

a + ã-z2 z2
aL

GHa, z1, z2L � Ha - 1L GHa - 1, z1, z2L + ã-z1 z1
a-1 - z2

a-1 ã-z2

QHa, zL � QHa + 1, zL -
ã-z za

GHa + 1L
QHa, zL � QHa - 1, zL +

ã-z za-1

GHaL
QHa, z1, z2L � QHa + 1, z1, z2L +

ã-z2 z2
a - ã-z1 z1

a

GHa + 1L
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QHa, z1, z2L � QHa - 1, z1, z2L +
z1

a-1 ã-z1 - z2
a-1 ã-z2

GHaL
logGHzL � logGHz + 1L - logHzL
logGHzL � logGHz - 1L + logHz - 1L.
The previous formulas can be generalized to the following recurrence identities with a jump of length n:

GHa, zL �
1

HaLn

 GHa + n, zL - za-1 ã-z â
k=1

n zk

HaLk

�; n Î N

GHa, zL � H-1Ln H1 - aLn GHa - n, zL + za-n-1 ã-z â
k=1

n zk

Ha - nLk

�; n Î N

GHa, z1, z2L �
1

HaLn

 GHa + n, z1, z2L - ã-z1 â
k=1

n z1
a+k-1

HaLk

+ ã-z2 â
k=1

n z2
a+k-1

HaLk

�; n Î N

GHa, z1, z2L � H-1Ln H1 - aLn GHa - n, z1, z2L + ã-z1 â
k=1

n z1
a+k-n-1

Ha - nLk

- ã-z2 â
k=1

n z2
a+k-n-1

Ha - nLk

�; n Î N

QHa, zL � QHa + n, zL - za-1 ã-z â
k=1

n zk

GHa + kL �; n Î N

QHa, zL � QHa - n, zL + za-1 ã-z â
k=0

n-1 z-k

GHa - kL �; n Î N

QHa, z1, z2L � QHa + n, z1, z2L - ã-z1 â
k=1

n z1
a+k-1

GHa + kL + ã-z2 â
k=1

n z2
a+k-1

GHa + kL �; n Î N

QHa, z1, z2L � QHa - n, z1, z2L + ã-z1 â
k=0

n-1 z1
a-k-1

GHa - kL - ã-z2 â
k=0

n-1 z2
a-k-1

GHa - kL �; n Î N

logGHzL � logGHz + nL - â
k=0

n-1

logHz + kL �; n Î N

logGHzL � logGHz - nL + â
k=1

n

logHz - kL �; n Î N.

Representations of derivatives

The derivatives of the gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, and QHa, z1, z2L with respect to the variables z,

z1, and z2 have simple representations in terms of elementary functions:

¶GHa, zL
¶z

� -ã-z za-1
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¶GHa, z1, z2L
¶z1

� -ã-z1 z1
a-1

¶GHa, z1, z2L
¶z2

� ã-z2 z2
a-1

¶QHa, zL
¶z

� -
ã-z za-1

GHaL
¶QHa, z1, z2L

¶z1

� -
ã-z1 z1

a-1

GHaL
¶QHa, z1, z2L

¶z2

�
ã-z2 z2

a-1

GHaL .

The derivatives of the log-gamma function logGHzL and the inverses of the regularized incomplete gamma functions

Q-1Ha, zL, and Q-1Ha, z1, z2L with respect to the variables z, z1, and z2 have more complicated representations by the

formulas:

¶ logG HzL
¶z

� ΨHzL
¶Q-1Ha, zL

¶z
� -ãQ-1Ha,zL Q-1Ha, zL1-a

GHaL
¶Q-1Ha, z1, z2L

¶z1

� ãQ-1Ha,z1 ,z2L-z1
Q-1Ha, z1, z2L

z1

1-a

¶Q-1Ha, z1, z2L
¶z2

� ãQ-1Ha,z1 ,z2L GHaL Q-1Ha, z1, z2L1-a
.

The derivative of the exponential integral EΝHzL by its parameter Ν can be represented in terms of the regularized

hypergeometric function 2F
�

2:

¶EΝHzL
¶Ν

� zΝ-1 GH1 - ΝL HlogHzL - ΨH1 - ΝLL - GH1 - ΝL2
2F

�
2H1 - Ν, 1 - Ν; 2 - Ν, 2 - Ν; -zL.

The derivatives of the gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, and QHa, z1, z2L, and their inverses Q-1Ha, zL
and Q-1Ha, z1, z2L with respect to the parameter a can be represented in terms of the regularized hypergeometric

function 2F
�

2:

¶GHa, zL
¶a

� GHaL2 za 2F
�

2Ha, a; a + 1, a + 1; -zL - GHa, 0, zL logHzL + GHaL ΨHaL
¶GHa, z1, z2L

¶a
�

GHaL2
2F

�
2Ha, a; a + 1, a + 1; -z1L z1

a - GHaL2
2F

�
2Ha, a; a + 1, a + 1; -z2L z2

a - GHa, 0, z1L logHz1L + GHa, 0, z2L logHz2L
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¶QHa, zL
¶a

� GHaL za
2F

�
2Ha, a; a + 1, a + 1; -zL + QHa, z, 0L HlogHzL - ΨHaLL

¶QHa, z1, z2L
¶a

� GHaL z1
a

2F
�

2Ha, a; a + 1, a + 1; -z1L -

GHaL z2
a

2F
�

2Ha, a; a + 1, a + 1; -z2L + QHa, z1, 0L logHz1L - QHa, z2, 0L logHz2L - ΨHaL QHa, z1, z2L
¶Q-1Ha, zL

¶a
� ãw w1-a IGHaL2

2F
�

2Ha, a; a + 1, a + 1; -wL wa + Hz - 1L GHaL logHwL + HGHaL - GHa, wLL ΨHaLM �; w � Q-1Ha, zL
¶Q-1Ha, z1, z2L

¶a
� ãw w1-a

1

a2
 Hwa

2F2Ha, a; a + 1, a + 1; -wL - z1
a

2F2Ha, a; a + 1, a + 1; -z1LL +

GHa, w, 0L logHwL + GHa, 0, z1L logHz1L + GHa, z1, wL ΨHaL �; w � Q-1Ha, z1, z2L.
The  symbolic  nth-order  derivatives  of  all  gamma functions  GHa, zL,  GHa, z1, z2L,  QHa, zL,  QHa, z1, z2L,  and  their

inverses Q-1Ha, zL, and Q-1Ha, z1, z2L have the following representations:

¶n GHa, zL
¶zn

� z-n â
k=0

n H-1Ln n

k
H-aLk GHa - k + n, zL �; n Î N

¶n GHa, zL
¶an

�

GHnLHaL - za â
j=0

n H-1Ln- j n

j
Hn - jL ! GHaLn- j+1 log jHzL n- j+1F

�
n- j+1Ia1, a2, ¼, an- j+1; a1 + 1, a2 + 1, ¼, an- j+1 + 1; -zM �;

a1 � a2 � ¼ � an+1 � a ì n Î N

¶n GHa, z1, z2L
¶z1

n
� z1

-n â
k=0

n H-1Ln n

k
H-aLk GHa - k + n, z1L �; n Î N+

¶n GHa, z1, z2L
¶z2

n
� -z2

-n â
k=0

n H-1Ln n

k
H-aLk GHa - k + n, z2L �; n Î N+

¶n GHa, z1, z2L
¶an

�

z2
a â

j=0

n H-1Ln- j n

j
Hn - jL ! GHaLn- j+1 log jHz2L n- j+1F

�
n- j+1Ia1, a2, ¼, an- j+1; a1 + 1, a2 + 1, ¼, an- j+1 + 1; -z2M -

z1
a â

j=0

n H-1Ln- j n

j
Hn - jL ! GHaLn- j+1 log jHz1L n- j+1F

�
n- j+1Ia1, a2, ¼, an- j+1; a1 + 1, a2 + 1, ¼, an- j+1 + 1; -z1M �; a1 �

a2 � ¼ � an+1 � a ì n Î N

¶n QHa, zL
¶zn

� -a z-n â
k=0

n H-1Ln-k n

k
H1 - a - kLn-1 QHa + k, zL �; n Î N
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¶n QHa, zL
¶an

�
GHnLHaL

GHaL -
1

GHaL  â
k=0

¥ H-1Ln-k GHn + 1, -Ha + kL logHzLL
Ha + kLn+1 k !

�; n Î N

¶n QHa, z1, z2L
¶z1

n
� -a z1

-n â
k=0

n H-1Ln-k n

k
H1 - a - kLn-1 QHa + k, z1L �; n Î N+

¶n QHa, z1, z2L
¶z2

n
� a z2

-n â
k=0

n H-1Ln-k n

k
H1 - a - kLn-1 QHa + k, z2L �; n Î N+

¶n QHa, z1, z2L
¶an

�

n! â
k=0

n

z2
a â

i=0

n-k H-1Ln-i-k n - k
i

Hn - i - kL ! GHaLn-i-k+1 logiHz2L n-k-i+1F
�

n-k-i+1Ha1, a2, ¼, an-k-i+1; a1 + 1, a2 + 1,

¼, an-k-i+1 + 1; -z2L - z1
a â

i=0

n-k H-1Ln-i-k n - k
i

Hn - i - kL ! GHaLn-i-k+1

logiHz1L n-k-i+1F
�

n-k-i+1Ha1, a2, ¼, an-k-i+1; a1 + 1, a2 + 1, ¼, an-k-i+1 + 1; -z1L

â
j=0

k H-1L j Hk + 1L GHaL- j-1

H j + 1L ! Hn - kL ! Hk - jL !

¶k GHaL j

¶ak
�; a1 � a2 � ¼ � an+1 � a ì n Î N

¶Α logGHzL
¶zΑ

� ΨHΑ-1LHzL
¶n Q-1Ha, zL

¶zn
� w ∆n + -

GHaL ãw

wa-1

n

 â
j2=0

n

¼ â
jn=0

n

∆Úi=2
n Hi-1L ji ,n-1 H-1LÚi=2

n ji n + â
i=2

n

ji - 1 !

ä
i=2

n 1

ji !
 

GHa + 1L ãw w-a-i+1

i!

ji â
k=0

i H-1Li-k i

k
H-a - k + 1Li-1 QHa + k, wL ji �; w � Q-1Ha, zL í n Î N

¶n Q-1Ha, z1, z2L
¶z2

n
� w ∆n + `

GHaL ãw

wa-1

n

 â
j2=0

n

¼ â
jn=0

n

∆Úi=2
n Hi-1L ji ,n-1 H-1LÚi=2

n ji n + â
i=2

n

ji - 1 ! ä
i=2

n 1

ji !
 

GHa + 1L ãw w1-a

i!

ji

a w-i â
k=0

i H-1Li-k i

k
H1 - a - kLi-1 QHa + k, wL + QHa, z1L ∆i

ji �; w � Q-1Ha, z1, z2L í n Î N.

Differential equations

The  gamma  functions  GHa, zL,  GHa, z1, z2L,  QHa, zL,  and  QHa, z1, z2L  satisfy  the  following  second-order  linear

differential equations:

z w¢¢HzL + H1 - a + zL w¢HzL � 0 �; wHzL � c1 GHa, zL + c2

z1 w¢¢Hz1L + H1 - a + z1L w¢Hz1L � 0 �; wHz1L � c1 GHa, z1, z2L + c2

z2 w¢¢Hz2L + H1 - a + z2L w¢Hz2L � 0 �; wHz2L � c1 GHa, z1, z2L + c2
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z w¢¢HzL + H1 - a + zL w¢HzL � 0 �; wHzL � c1 QHa, zL + c2

z1 w¢¢Hz1L + H1 - a + z1L w¢Hz1L � 0 �; wHz1L � c1 QHa, z1, z2L + c2

z2 w¢¢Hz2L + H1 - a + z2L w¢Hz2L � 0 �; wHz2L � c1 QHa, z1, z2L + c2,

where c1 and c2 are arbitrary constants.

The log-gamma function logGHzL satisfies the following simple first-order linear differential equation:

¶wHzL
¶z

� ΨHzL �; wHzL � logGHzL.
The inverses  of  the regularized incomplete gamma functions Q-1Ha, zL  and Q-1Ha, z1, z2L  satisfy the following

ordinary nonlinear second-order differential equation:

wHzL w¢¢HzL - w¢HzL2 HwHzL + 1 - aL � 0 �; wHzL � Q-1Ha, zL
wHz2L w¢¢Hz2L - w¢Hz2L2 H-a + wHz2L + 1L � 0 �; wHz2L � Q-1Ha, z1, z2L.

Applications of gamma functions

The gamma functions are used throughout mathematics,  the exact sciences,  and engineering.  In particular,  the

incomplete gamma function is used in solid state physics and statistics, and the logarithm of the gamma function is

used in discrete mathematics, number theory, and other fields of sciences.

Introduction to the Gamma Function

General

The gamma function GHzL  is used in the mathematical and applied sciences almost as often as the well-known

factorial symbol n!. It was introduced by the famous mathematician L. Euler (1729) as a natural extension of the

factorial operation n! from positive integers n to real and even complex values of the argument n. This relation is

described by the following formula:

GHnL = Hn - 1L !.

L. Euler derived some basic properties and formulas for the gamma function. He started investigations of n! from

the infinite product

n! � lim
m®¥

m! Hm + 1Ln

Ûk=1
m Hk + nL

and the integral

à
0

1

ta-1 H1 - tLb-1 â t,

which is currently known as the beta function integral. As a result, Euler derived the following integral representa-

tion for factorial n!:
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n! � à
0

1H-logHtLLn â t,

which can be easily converted into the well-known Euler integral for the gamma function:

.GHn + 1L � n! � à
0

¥

Τn ã-Τ â Τ.

Also, during his research, Euler closely approached the famous reflection formula:

GHzL GHzL �
Π

sinHΠ zL ,

which later got his name.

At the same time, J. Stirling (1730) found the famous asymptotic formula for the factorial, which bears his name.

This formula was also naturally applied to the gamma function resulting in the following asymptotic relation:

GHxL µ 2 Π xx-
1

2 ã-x �; Hx ® ¥L.
Later, A. M. Legendre (1808, 1814) suggested the current symbol G for the gamma function and discovered the

duplication formula:

GH2 zL �
22 z-1

Π
GHzL G z +

1

2
.

It was generalized by C. F. Gauss (1812) to the multiplication formula:

GHn zL � nn z-
1

2 H2 ΠL 1-n

2 ä
k=0

n-1

G z +
k

n
�; n Î N+.

F. W. Newman (1848) studied the reciprocal of the gamma function and found that it is an entire function and has

the following product representation valid for the whole complex plane:

1

GHzL � z ãz ý ä
k=1

¥

1 +
z

k
ã

-
z

k ,

where ý = 0.5772156 ¼ is the Euler–Mascheroni gamma constant.

B. Riemann (1856) proved an important relation between the gamma and zeta functions:

ΖHsL � ΖH1 - sL GH1 - sL 2s Πs-1 sin
Π s

2
,

which was mentioned centuries ago in an article by Euler (1749) for particular values of the argument s.

K.  Weierstrass  (1856)  and  other  nineteenth  century  mathematicians  widely  used  the  gamma function  in  their

investigations and discovered many more complicated properties and formulas for  it.  In  particular,  H.  Hankel

(1864, 1880) derived its contour integral representation for complex arguments, and O. Hölder (1887) proved that

the gamma function does not satisfy any algebraic differential equation. This result was subsequently re-proved by

A. Ostrowski (1925).
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Many mathematicians devote special attention to the question of the uniqueness of extending the factorial operation

n! from positive integers to arbitrary real or complex values. Evidently this question is connected to the solutions

of the functional equation:

FHzL = z FHz - 1L.
J. Hadamard (1894) found that the function yHzL � 1 � GH1 - zL ¶

¶z
 logHGHH1 - zL � 2L � GH1 - z � 2LL is an entire analytic

function that coincides with Hz - 1L ! for z � 1, 2, 3, ¼. But this function satisfies the more complicated functional

equation  ΦHz + 1L � z ΦHzL + 1 � GH1 - zL  and  has  a  more  complicated  integral  representation  than  the  classical

gamma function defined by the Euler integral. 

H. Bohr and J. Mollerup (1922) proved that the gamma function FHzL = GHzL is the only function that satisfies the

recurrence relationship ΦHz + 1L � z ΦHzL, is positive for z > 0, equals one at z � 1, and is logarithmically convex

(that is, logHGHzLL is convex). If the restriction on convexity is absent, then the recurrence relationship has an infinite

set of solutions in the form  ΦHzL � ΘHzL GHzL, where ΘHzL is an arbitrary periodic function with period 1.

Definition of gamma function

The gamma function GHzL in the half-plane ReHzL > 0 is defined as the value of the following definite integral:

GHzL � à
0

¥

tz-1 ã-t  â t �; ReHzL > 0.

This integral is an analytic function that can be represented in different forms; for example, as the following sum of

an integral and a series without any restrictions on the argument:

GHzL � à
1

¥

tz-1 ã-t  â t + â
k=0

¥ H-1Lk

k ! Hk + zL .

The last formula can also be used as an equivalent definition of the gamma function.

A quick look at the gamma function

Here is a quick look at the graphics for the gamma function along the real axis.

-Π 0 Π
x

-3

-2

-1

0

1

2

3

f

Connections within the group of gamma functions and with other function groups
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Representations through more general functions

The gamma function GHzL is the main example of a group of functions collectively referred to as gamma functions.

For example, it can be written in terms of the incomplete gamma function:

GHzL � GHz, 0L �; ReHzL > 0.

All four incomplete gamma functions GHa, zL, GHa, z1, z2L, QHa, zL, and QHa, z1, z2L can be represented as cases of

the hypergeometric function 1F1. Further, the gamma function G(z) is the special degenerate case of the hypergeo-

metric function 1F1.

Representations through related equivalent functions

The gamma function GHzL and two factorial functions are connected by the formulas:

GHzL � Hz - 1L !

GHzL � 2
1

4
H3-4 z+cosH2 Π zLL Π

1

2
sin2HΠ zL H2 z - 2L !!.

The best-known properties and formulas for the gamma function

Values at points

The gamma function GHzL can be exactly evaluated in the points z = n
2

�; n Î Z. Here are examples:

G H-3L � ¥� G J- 5

2
N � - 8

15
Π G H-2L � ¥� G J- 3

2
N � 4 Π

3

G H-1L � ¥� G J- 1

2
N � -2 Π G H0L � ¥� G J 1

2
N � Π

G H1L � 1 G J 3

2
N � Π

2
G H2L � 1 G J 5

2
N � 3 Π

4

G H3L � 2 GJ 7

2
N � 15 Π

8
GH4L � 6 GJ 9

2
N � 105 Π

16
.

Specific values for specialized variables

The preceding evaluations can be provided by the formulas:

GHnL � Hn - 1L ! �; n Î N+

GH-nL � ¥� �; n Î N

GK n

2
O �

21-n Π Hn - 1L !

n-1

2
!

�; n Î N+

GK-
n

2
O �

H-1L n+1

2 2n Π n-1

2
!

n!
�; n Î N+.

At the points z = n +
p

q
�; n Î Z ì p Î N+ ì q Î N+ ì p < q, the values of the gamma function GHzL can be repre-

sented through values of GJ p

q
N:  
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G
p

q
+ n �

1

qn
 G

p

q
ä
k=1

n Hp + k q - qL �; n Î N ì p Î N+ ì q Î N+ ì p < q

G
p

q
- n �

H-1Ln qn

Ûk=1
n Hq k - pL  G

p

q
�; n Î N ì p Î N+ ì q Î N+ ì p < q.

Real values for real arguments

For real values of argument z, the values of the gamma function GHzL are real (or infinity). The gamma function is

not equal to zero:

GHzL ¹ 0 �; " z.

Analyticity

The gamma function GHzL is an analytical function of z, which is defined over the whole complex z-plane with the

exception of countably many points z = -k �; k Î N.  The reciprocal of the gamma function 1 � GHzL  is  an entire

function.

Poles and essential singularities

The function GHzL has an infinite set of singular points z � -k �; k Î N, which are the simple poles with residues
H-1Lk

k!
. The point z � ¥�  is the accumulation point of the poles, which means that ¥�  is an essential singular point.

Branch points and branch cuts

The function GHzL does not have branch points and branch cuts.

Periodicity

The function GHzL does not have periodicity.

Parity and symmetry

The function GHzL has mirror symmetry:

GHz�L � GHzL.
Differentiation

The derivatives of GHzL can be represented through gamma and polygamma functions:

¶GHzL
¶z

� GHzL ΨHzL
¶2 GHzL

¶z2
� GHzL ΨHzL2 + GHzL ΨH1LHzL.

Ordinary differential equation

The gamma function GHzL  does not  satisfy any algebraic  differential  equation (O. Hölder,  1887).  But  it  is  the

solution of the following nonalgebraic equation:
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¶wHzL
¶z

� wHzL ΨHzL �; wHzL � GHzL.
Series representations

Series representations of the gamma function GHzL near the poles z � 0, -1, -2, ¼ are of great interest for applica-

tions in the theory of generalized hypergeometric, Meijer G, and Fox H functions. These representations can be

described by the formulas:

GHzL µ
H-1Ln

n! Hz + nL +
H-1Ln ΨHn + 1L

n!
+ OHz + nL �; Hz ® -nL ß n Î N

GHzL µ
H-1Ln

n! Hz + nL â
v=0

¥ â
s=0

v H-1L s+v

2
-1 H2v-s - 2L Bv-s Πv-s GHn + 1L

s! Hv - sL !
 

¶s 1

GHzL
¶zs

�. 8z ® n + 1< Hz + nLv �; Hz ® -nL ß n Î N,

where Bv are the Bernoulli numbers.

Asymptotic series expansions

Asymptotic behavior of the gamma function GHzL is described by the famous Stirling formula:

GHzL µ 2 Π zz-
1

2 ã-z 1 + O
1

z
�;  ArgHzL¤ < Π ì H z¤ ® ¥L.

This formula allows derivation of the following asymptotic expansion for the ratio of gamma functions:

GHz + aL
GHz + bL µ za-b 1 + O

1

z
�;  ArgHa + zL¤ < Π ì H z¤ ® ¥L.

Integral representations

The gamma function GHzL has several integral representations that are different from the Euler integral:

GHzL � à
0

¥

tz-1 ã-t  â t �; ReHzL > 0

and related integral

GHzL � à
1

¥

tz-1 ã-t  â t + â
k=0

¥ H-1Lk

k ! Hk + zL ,

which can be used for defining the gamma function over the whole complex plane.

Some of the integral representations are the following:

GHzL � à
0

¥

ã-t - â
k=0

n H-tLk

k !
tz-1 â t �; n Î N ß -n - 1 < ReHzL < -n

GHzL � à
0

1

logz-1
1

t
 â t �; ReHzL > 0
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GHzL � ã-ý z ã
Ù0

1 xz-logIxz M-1

Hx-1L logHxL  âx �; Re HzL > 0

GHzL � ã
Ù0

1 xz-z Hx-1L-1Hx-1L logHxL  âx �; ReHzL > 0

GHzL � sz à
0

ãä ∆ ¥

tz-1 ã-s t  â t �; ReHzL > 0 í  ∆ + ArgHsL¤ <
Π

2
ë 0 < ReHzL < 1 í  ∆ + ArgHsL¤ �

Π

2

GHzL �
1

ã2 Π ä z - 1
 à

L
ã-t tz-1 â t.

This final formula is known as Hankel's contour integral. The path of integration L starts at ¥ + ä 0 on the real axis,

goes to Ε + ä 0, circles the origin in the counterclockwise direction with radius Ε to the point Ε - ä 0, and returns to

the point ¥ - ä 0.

Product representations

The following infinite product representation for GHzL clearly illustrates that GHzL � ¥� at z � -k ì k Î N:

GHzL �
1

z
 ä
k=1

¥ J1 + 1

k
Nz

1 + z

k

.

The similar product representation for 1 � GHzL illustrates that GHzL is an entire function:

1

GHzL � z ãz ý ä
k=1

¥

1 +
z

k
ã

-
z

k .

Limit representations

The following famous limit representation for GHzL was known to L. Euler:

GHzL � lim
n®¥

Hn + 1Lz-1 n!

HzLn

.

It can be modified to the following related limit representations:

GHzL � lim
n®¥

Hn + 1Lz n!

HzLn+1

GHzL � lim
n®¥

n! nz

HzLn+1

GHzL � lim
n®¥

H1Ln nz-1

HzLn

.

The gamma function can be evaluated as the limit of the following definite integral:

GHzL � lim
n®¥

à
0

n

1 -
t

n

n

tz-1 â t �; ReHzL > 0.
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Definite integration

The most famous definite integrals, including the gamma function, belong to the class of Mellin–Barnes integrals.

They are used to provide a uniform representation of all generalized hypergeometric, Meijer G, and Fox H func-

tions. For example, the Meijer G function is defined as the value of the following Mellin–Barnes integral:

Gp,q
m,n z

a1, ¼, an, an+1, ¼, ap

b1, ¼, bm, bm+1, ¼, bq
�

1

2 Π ä
 à

L

IÛk=1
m GHs + bkLM Ûk=1

n GH1 - ak - sL
IÛk=n+1

p
GHs + akL M Ûk=m+1

q
GH1 - bk - sL  z-s â s �;

m Î N ì n Î N ì p Î N ì q Î N ì m £ q ì n £ p.

The infinite contour of integration L separates the poles of GH1 - ak - sL at s = 1 - ak + j, j Î N from the poles of

GHbi + sL at s = -bi - l, l Î N. Such a contour always exists in the cases ak - bi - 1 Ï N.

There are three possibilities for the contour L :

(i) L runs from Γ-ä¥ to Γ+ä¥ (where ImHΓL = 0) so that all poles of GHbi + sL, i = 1, ¼, m, are to the left of L, and

all the poles of GH1 - ai - sL, i = 1, ¼, n are to the right of L. This contour can be a straight line HΓ - ä ¥, Γ + ä ¥L
if   ReHbi - akL > -1  (then  -ReHbiL < Γ < 1 - ReHakL).  In  this  case,  the  integral  converges  if  p + q < 2 Hm + nL,
 ArgHzL¤ < Im + n -

p+q

2
M Π.  If  m + n -

p+q

2
= 0,  then  z  must  be  real  and  positive,  and  the  additional  condition

Hq - pL Γ + ReHΜL < 0, Μ � Úl=1
q

bl - Úk=1
p

ak +
p-q

2
+ 1, should be added.

(ii) L is a left loop, starting and ending at -¥ and encircling all poles of GHbi + sL, i = 1, ¼, m, once in the positive

direction, but none of the poles of GH1 - ai - sL, i = 1, ¼, n. In this case, the integral converges if q ³ 1 and either

q > p or q = p and  z¤ < 1 or q = p and  z¤ � 1 and  m + n -
p+q

2
³ 0 and  ReHΜL < 0.

(iii) L is a right loop, starting and ending at +¥ and encircling all poles of GH1 - ai - sL, i = 1, ¼, n, once in the

negative direction, but none of the poles of GHbi + sL, i = 1, ¼, m. In this case, the integral converges if p ³ 1, and

either p > q or p = q and  z¤ > 1 or q = p and  z¤ � 1 and  m + n -
p+q

2
³ 0 and  ReHΜL < 0.

In particular cases, the last integral can be evaluated using simpler elementary and special functions:

1

2 Π ä
 à

L

GHs + bL z-s â s � ã-z zb

1

2 Π ä
 à

L

GHs + bL GH1 - a - sL z-s â s � GH1 - a + bL zb Hz + 1La-b-1

1

2 Π ä
 à

L

GHsL H1 - xL-s

GHs + 1L  â s � ΘHxL �; x < 2

1

4 Π ä
 à

Γ-ä ¥

Γ+ä ¥

GHsL GHs - ΝL K z

2
OΝ-2 s

� KΝHzL �; Γ > maxHReHΝL, 0L
1

2 Π ä
 à

Γ-ä ¥

Γ+ä ¥ GHsL
GH1 + Ν - sL K x

2
OΝ-2 s

 â s � JΝHxL �; x > 0 í 0 < Γ <
3

4
+

ReHΝL
2
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à
Γ-ä ¥

Γ+ä ¥

GHa + tL GHb + tL GHc - tL GHd - tL â t �
2 Π ä GHa + cL GHa + dL GHb + cL GHb + dL

GHa + b + c + dL �;
-minHReHaL, ReHbLL < Γ < minHReHcL, ReHdLL

à
Γ-ä ¥

Γ+ä ¥ GHa + tL GHb - tL
GHc + tL GHd - tL  â t �

2 Π ä GHa + bL GHc + d - a - b - 1L
GHc + d - 1L GHc - aL GHd - bL �; -ReHaL < Γ < ReHbL ì ReHa + b - c - dL < -1.

Integral transforms

The definition  of  the  Meijer  G function  through a  Mellin-Barnes  integral  realizes  the  inverse  Mellin  integral

transform of ratios of gamma functions: 

IÛk=1
m GHs + bkLM Ûk=1

n GH1 - ak - sL
IÛk=n+1

p
GHs + akL M Ûk=m+1

q
GH1 - bk - sL .

The contour L is the vertical straight line HΓ - ä ¥, Γ + ä ¥L. It allows the writing of the following rather general

formula for the inverse Mellin integral transform:

Ms
-1BÛk=1

A GHs + akL Ûk=1
B GHbk - sL

Ûk=1
C GHs + ckL Ûk=1

D GHdk - sL F HtL � GB+C,A+D
A,B t

1 - b1, ¼, 1 - bB, c1, ¼, cC

a1, ¼, aA, 1 - d1, ¼, 1 - dD
�;

D � A - B - C + D í E � A + B - C - D í Ν � â
k=1

A

ak + â
k=1

B

bk - â
k=1

C

ck - â
k=1

D

dk í
-minHReHa1L, ¼, ReHaALL < ReHsL < minHReHb1L, ¼, ReHbBLL í

 ArgHtL¤ <
Π E

2
í E > 0 ë  ArgHtL¤ �

Π E

2
í E > 0 í -

E

2
+ D ReHsL + ReHΝL < -1 ë t > 0 í E � 0 í

D ¹ 0 í D ReHsL + ReHΝL <
1

2
ë t > 0 ì E � 0 ì D � 0 ì HReHΝL < 0 ß t ¹ 1 Þ ReHΝL < -1 ß t � 1L .

In particular cases, it gives the following representations:

Ms
-1@GHsLD HtL � ã-t �; ReHsL > 0

Ms
-1@GHsL GHa - sLD HtL � Ht + 1L-a GHaL �; 0 < ReHsL < ReHaL

Ms
-1B GHsL

GHa - sL F HtL � t
1-a

2 Ja-1I2 t N �; 0 < ReHsL <
2 ReHaL + 1

4

Ms
-1B GHsL

GHa + sL F HtL �
H1 - tLa-1 ΘH1 - tL

GHaL �; ReHaL > 0 ß ReHsL > 0.

Transformations

The following formulas describe some transformations of the gamma functions with linear arguments into expres-

sions that contain the gamma function with the simplest argument:

GH-zL � -
Π cscHΠ zL

z GHzL
GHz + 1L � z GHzL
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GHz + nL � HzLn GHzL
GHz - 1L �

GHzL
z - 1

GHz - nL �
H-1Ln GHzL

H1 - zLn

�; n Î Z.

Multiple arguments

In the case of multiple arguments 2 z, 3 z,…, n z, the gamma function GHzL can be represented by the following

duplication and multiplication formulas, derived by A. M. Legendre and C. F. Gauss:

GH2 zL �
22 z-1

Π
 GHzL G z +

1

2

GHn zL � nn z-
1

2 H2 ΠL 1-n

2 ä
k=0

n-1

G z +
k

n
�; n Î N+.

Products involving the direct function

The product  of  two gamma functions GHzL  and GHwL,  with  arguments  satisfying the condition that  z + w  is  an

integer, can be represented through elementary functions:

GHzL GHn - zL �
Π

sinHΠ zL H1 - zLn-1 �; n Î Z.

The preceding formula transforms into the following formula and its relatives: 

GHzL GH1 - zL �
Π

sinHΠ zL
G z +

1

2
G

1

2
- z �

Π

cosHΠ zL
GHzL GH-zL � -

Π

z sinHΠ zL .

The ratio of two gamma functions GHwL and GHzL, with arguments satisfying the condition that z + w is integer, can

be represented through a polynomial or rational function:

GHz + nL
GHzL � HzLn � ä

k=0

n-1 Hz + kL �; n Î N

GHz - nL
GHzL �

H-1Ln

H1 - zLn

� ä
k=1

n 1

z - k
�; n Î N.

Identities

The gamma function GHzL satisfies the following recurrence identities:
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GHzL �
GHz + 1L

z

GHzL � Hz - 1L GHz - 1L.
These formulas can be generalized to the following recurrence identities with a jump of length n:

GHzL �
GHz + nL

HzLn

GHzL � H-1Ln H1 - zLn GHz - nL �; n Î Z.

Inequalities

The most famous inequalities for the gamma function can be described by the following formulas:

 GHzL¤ £  GHReHzLL¤
GHxL £ xx ã1-x �; x Î R ß x ³ 1

x

ã

x-1

£ GHxL £ £ K x

2
Ox-1 �; x Î R ß x ³ 2.

Applications 

The gamma function is used throughout mathematics, the exact sciences, and engineering.
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