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Introductions to Pi

Introduction to the classical constants

General
Golden ratio

The division of aline segment whose total length is a + b into two parts a and b where theratio of a+ btoais
equal to theratio a to b is known as the golden ratio. The two ratios are both approximately equal to 1.618..., which
is called the golden ratio constant and usually notated by ¢:

a+b a 6 1+vV5
-

The concept of golden ratio division appeared more than 2400 years ago as evidenced in art and architecture. It is
possible that the magical golden ratio divisions of parts are rather closely associated with the notion of beauty in
pleasing, harmonious proportions expressed in different areas of knowledge by biologists, artists, musicians,
historians, architects, psychologists, scientists, and even mystics. For example, the Greek sculptor Phidias (490430
BC) made the Parthenon statues in a way that seems to embody the golden ratio; Plato (427-347 BC), in his
Timaeus, describes the five possible regular solids, known as the Platonic solids (the tetrahedron, cube, octahedron,
dodecahedron, and icosahedron), some of which are related to the golden ratio.

The properties of the golden ratio were mentioned in the works of the ancient Greeks Pythagoras (c. 580-c. 500
BC) and Euclid (c. 325-c. 265 BC), the Italian mathematician Leonardo of Pisa (1170s or 1180s-1250), and the
Renaissance astronomer J. Kepler (1571-1630). Specifically, in book V1 of the Elements, Euclid gave the following
definition of the golden ratio: "A straight lineis said to have been cut in extreme and mean ratio when, as the whole
line is to the greater segment, o is the greater to the less'. Therein Euclid showed that the "mean and extreme
ratio”, the name used for the golden ratio until about the 18th century, is an irrational number.

In 1509 L. Pacioli published the book De Divina Proportione, which gave new impetus to the theory of the golden
ratio; in particular, he illustrated the golden ratio as applied to human faces by artists, architects, scientists, and
mystics. G. Cardano (1545) mentioned the golden ratio in his famous book Ars Magna, where he solved quadratic
and cubic equations and was the first to explicitly make calculations with complex numbers. Later M. Mastlin
(1597) evaluated 1/ ¢ approximately as 0.6180340 .... J. Kepler (1608) showed that the ratios of Fibonacci num-
bers approximate the value of the golden ratio and described the golden ratio as a "precious jewel". R. Simson
(1753) gave a simple limit representation of the golden ratio based on its very simple continued fraction

p=1+
1

11 . M. Ohm (1835) gave the first known use of the term "golden section", believed to have originated

earlier in the century from an unknown source. J. Sulley (1875) first used the term "golden ratio" in English and G.
Chrystal (1898) first used thisterm in a mathematical context.

The symbol ¢ (phi) for the notation of the golden ratio was suggested by American mathematician M. Barrwas in
1909. Phi isthefirst Greek letter in the name of the Greek sculptor Phidias.
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Throughout history many people have tried to attribute some kind of magic or cult meaning as a valid description
of nature and attempted to prove that the golden ratio was incorporated into different architecture and art objects
(like the Great Pyramid, the Parthenon, old buildings, sculptures and pictures). But modern investigations (for
example, G. Markowsky (1992), C. Falbo (2005), and A. Olariu (2007)) showed that these are mostly misconcep-
tions: the differences between the golden ratio and real ratios of these objectsin many cases reach 20-30%or more.

The golden ratio has many remarkable properties related to its quasi symmetry. It satisfies the quadratic equation
72— z-1=0, which has solutions z; == ¢ and z, == 1 — ¢. The absolute value of the second solution is called the
golden ratio conjugate, ® == ¢ — 1. These ratios satisfy the following relations:

1 1
—1=— O+1=—.
¢ ¢/\ +l=

Applications of the golden ratio also include algebraic coding theory, linear sequential circuits, quasicrystals,
phyllotaxis, biomathematics, and computer science.

Pi

The constant == 3.14159 ... is the most frequently encountered classical constant in mathematics and the natural
sciences. Initialy it was defined as the ratio of the length of a circle's circumference to its diameter. Many further
interpretations and applications in practically all fields of qualitative science followed. For instance, the following
table illustrates how the constant 7 is applied to evaluate surface areas and volumes of some simple geometrical
objects:
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Different approximations of 7 have been known since antiquity or before when people discovered some basic
properties of circles. The design of Egyptian pyramids (c. 3000 BC) incorporated 7 as
22/7==3+1/7(~ 3.142857 ...) in numerous places. The Egyptian scribe Ahmes (Middle Kingdom papyrus, c.
2000 BC) wrote the oldest known text to give an approximate value for z as (16/9)? ~ 3.16045.... Babylonian
mathematicians (19th century BC) were using an estimation of z as 25/8, which is within 0.53% of the exact
value. (China, ¢. 1200 BC) and the Biblical verse | Kings 7:23 (c. 971-852 BC) gave the estimation of = as 3.
Archimedes (Greece, c. 240 BC) knew that 3+ 10/71 < < 3+ 1/7 and gave the estimation of r as 3.1418....
Aryabhata (India, 5th century) gave the approximation of 7 as 62832/20000, correct to four decimal places. Zu
Chongzhi (China, 5th century) gave two approximations of 7 as 355/113 and 22/7 and restricted & between

3.1415926 and 3.1415927.
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A reinvestigation of & began by building corresponding series and other calculus-related formulas for this constant.
Simultaneously, scientists continued to evaluate o with greater and greater accuracy and proved different structural
properti% of n. Madhava of Sangamagrama (India, 1350-1425) found the infinite series expansion

=1- + g - 7 + § — ... (currently named the Gregory-Leibniz series or Leibniz formula) and evaluated 7 with
11 correct digits. Ghyath ad-din Jamshid Kashani (Persia, 1424) evaluated 7 with 16 correct digits. F. Viete (1593)
. \/— N 2+ 2+V 24V 2

represented 2/ as the infinite product .. Ludolph van Ceulen (Germany, 1610)

2

22446688
J

evaluated 35 decimal places of 7. J. Wallls(1655) represented n as the infinite product % =7335577¢5 9%

Machin (England, 1706) developed a quickly converging series for n, based on the formula

n)4= 4tan‘1(—) — tan™( 239) and used it to evaluate 100 correct digits. W. Jones (1706) introduced the symbol 7
for notation of the Pi constant. L. Euler (1737) adopted the symbol 7 and made it standard. C. Goldbach (1742) also
widely used the symbol 7. J. H. Lambert (1761) established that 7 is an irrational number. J. Vega (Slovenia, 1789)
improved J. Machin's 1706 formula and calculated 126 correct digits for 7. W. Rutherford (1841) calculated 152
correct digits for . After 20 years of hard work, W. Shanks (1873) presented 707 digits for x, but only 527 digits
were correct (as D. F. Ferguson found in 1947). F. Lindemann (1882) proved that r is transcendental. F. C. W.
Stormer (1896) derived the formula 7 = 44tan‘1( =)+ 7tan‘1(239) 12 tan‘1(682) + 24tan‘1(129 =)
used in 2002 for the evaluation of 1,241,100,000,000 digits of #. D. F. Ferguson (1947) recalculated r to 808
decimal places, using a mechanical desk calculator. K. Mahler (1953) proved that 7 is hot a Liouville number.

which was

Modern computer calculation of 7 was started by D. Shanks (1961), who reported 100000 digits of x. This record
was improved many times; Y asumasa Kanada (Japan, December 2002) using a 64-node Hitachi supercomputer
evaluated 1,241,100,000,000 digits of . For this purpose he used the earlier mentioned formula of F. C. W.

Stormer (1896) and the formula 7 = 12 tan‘l( 5)+32 tan‘l( =) - 5tan‘1( )+12 tan‘l(

). Future improved

239 110443

results are inevitable.
Degree

Babylonians divided the circle into 360 degrees (360°), probably because 360 approximates the number of daysin
ayear. Ptolemy (Egypt, c. 90-168 AD) in Mathematical s/ntaxis used the symbol sing ° in astronomical calcula-

tions. Mathematically, one degree (1 °) has the numerical value —— 180

T

180’

o

Therefore, all historical and other information about ° can be derived from information about 7.

Euler constant
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J. Napier in hiswork on logarithms (1618) mentioned the existence of a special convenient constant for the calcula-
tion of logarithms (but he did not evaluate this constant). It is possible that the table of logarithms was written by
W. Oughtred, who is credited in 1622 with inventing the slide rule, which is atool used for multiplication, division,
evaluation of roots, logarithms, and other functions. In 1669 |. Newton published the series
2+1/2'+1/3!+...==2.71828 ..., which actually converges to that special constant. At that time J. Bernoulli
tried to find the limit of (1+1/n)", whenn - co. G. W. Leibniz (1690-1691) was the first, in correspondence to C.
Huygens, to recognize this limit as a specia constant, but he used the notation b to represent it.

L. Euler began using the letter e for that constant in 1727-1728, and introduced this notation in a letter to C.
Goldbach (1731). However, thefirst use of e in a published work appeared in Euler's Mechanica (1736). In 1737 L.
Euler proved that e and e are irrational numbers and represented e through continued fractions. In 1748 L. Euler
represented e as an infinite sum and found its first 23 digits:

© 1 1 1 1 1
e::Z—:: -+ —+—+—+....
s 1 21 31 4

D. Bernoulli (1760) used e as the base of the natural logarithms. J. Lambert (1768) proved that ¢”9is an irrational
number, if p/qisanonzero rational number.

In the 19th century A. Cauchy (1823) determined that e == lim (1 + 1/2)% J. Liouville (1844) proved that e does

Z—>00
not satisfy any quadratic equation with integral coefficients; C. Hermite (1873) proved that e is a transcendental
number; and E. Catalan (1873) represented e through infinite products.

The only constant appearing more frequently than e in mathematicsis . Physical applications of e are very often
connected with time-dependent processes. For example, if w (t) is a decreasing value of a quantity at time t, which
decreases at a rate proportional to its value with coefficient —A, this quantity is subject to exponential decay
described by the following differential equation and its solution:

W) = -At/; W) =ce !

where ¢ == w(0) is the initial quantity at time t == 0. Examples of such processes can be found in the following: a
radionuclide that undergoes radioactive decay, chemical reactions (like enzyme-catalyzed reactions), electric
charge, vibrations, pharmacology and toxicology, and the intensity of electromagnetic radiation.

Euler gamma

In 1735 the Swiss mathematician L. Euler introduced a special constant that represents the limiting difference
between the harmonic series and the natural logarithm;

n1

k=1
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Euler denoted it using the symbol C, and initially calculated its value to 6 decimal places, which he extended to 16
digitsin 1781. L. Mascheroni (1790) first used the symbol y for the notation of this constant and calculated its
value to 19 correct digits. Later J. Soldner (1809) calculated y to 40 correct digits, which C. Gauss and F. Nicolai

1 2,14
(1812) verified. E. Catalan (1875) found the integral representation for this constant y == 1 — f % dt.
0

This constant was named the Euler gamma or Euler-Mascheroni constant in the honor of its founders.
Applicationsinclude discrete mathematics and number theory.

Catalan constant

The Catalan constant C==1-1/32+1/5?-1/7%+ ... == 0.915966 ... was named in honor of Eu. Ch. Catalan

(1814-1894), who introduced a faster convergent equivalent series and expressions in terms of integrals. Based on
methods resulting from collaborations with M. Leclert, E. Catalan (1865) computed C up to 9 decimals. M. Bresse
(1867) computed 24 decimals of C using a technique from E. Kummer's work. J. Glaisher (1877) evaluated 20
digits of the Catalan constant, which he extended to 32 digitsin 1913.

The Catalan constant is applied in number theory, combinatorics, and different areas of mathematical analysis.

Glaisher constant

Theworks of H. Kinkelin (1860) and J. Glaisher (1877-1878) introduced one special constant:

1
A=exp| — - (-1,
eXp(lz e ))

which was |ater called the Glaisher or Glaisher-Kinkelin constant in honor of its founders. This constant is used in
number theory, Bose-Einstein and Fermi-Dirac statistics, analytic approximation and evaluation of integrals and
products, regularization techniques in quantum field theory, and the Scharnhorst effect of quantum electrodynamics.

Khinchin constant

The 1934 work of A. Khinchin considered the limit of the geometric mean of continued fraction terms

lim (Hﬂzl qk)l/n and found that its value is a constant independent for almost all continued fractions:
N—oo

1
q0+7l::x/\ O« € N*,
O +

—_
7] o

The constant—named the Khinchin constant in the honor of its founder—established that rational numbers, solu-
tions of quadratic equations with rational coefficients, the golden ratio ¢, and the Euler number ¢ upon being
expanded into continued fractions do not have the previous property. Other site numerical verifications showed that
continued fraction expansions of x, the Euler-Mascheroni constant y, and Khinchin's constant K itself can satisfy

that property. But it was still not proved accurately.
Applications of the Khinchin constant K include number theory.

Imaginary unit
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The imaginary unit constant i allows the real number system R to be extended to the complex number system C.
This system allows for solutions of polynomial equations such as 7% + 1 == 0 and more complicated polynomial
equations through complex numbers. Hence i? == —1 and (—i)? == -1, and the previous quadratic equation has two
solutions as is expected for a quadratic polynomial:

=-1/2=2=i\NZ2=2=—I.

The imaginary unit has a long history, which started with the question of how to understand and interpret the
solution of the simple quadratic equation 7% = —1.

It was clear that 12 == (—1)? == 1. But it was not clear how to get —1 from something squared.

In the 16th, 17th, and 18th centuries this problem was intensively discussed together with the problem of solving
the cubic, quartic, and other polynomial equations. S. Ferro (Italy, 1465-1526) first discovered a method to solve
cubic equations. N. F. Tartaglia (Italy, 1500-1557) independently solved cubic equations. G. Cardano (Italy, 1545)
published the solutions to the cubic and quartic equations in his book Ars Magna, with one case of this solution
communicated to him by N. Tartaglia. He noted the existence of so-called imaginary numbers, but did not describe
their properties. L. Ferrari (Italy, 1522—1565) solved the quartic equation, which was mentioned in the book Ars
Magna by his teacher G. Cardano. R. Descartes (1637) suggested the name "imaginary" for nonreal numbers like
1++v-1.J wallis (1685) in De Algebra tractates published the idea of the graphic representation of complex
numbers. J. Bernoulli (1702) used imaginary numbers. R. Cotes (1714) derived the formula:

€'? == cos(¢) + i Sin(¢),

which in 1748 was found by L. Euler and hence named for him.

A. Moivre (1730) derived the well-known formula (cos(x) + i sin(x))" = cos(nx) + i Sin(n x) /; n € N, which bears
his name.

Investigations of L. Euler (1727, 1728) gave new imputus to the theory of complex numbers and functions of
complex arguments (analytic functions). In aletter to C. Goldbach (1731) L. Euler introduced the notation e for the
base of the natural logarithm ¢==2.71828182... and he proved that e isirrational. Later on L. Euler (1740-1748)
found a series expansion for ¢, which lead to the famous and very basic formula connecting exponential and
trigonometric functions cos(x) + i Sin(x) == e** (1748). H. Kiihn (1753) used imaginary numbers. L. Euler (1755)
used the word "complex" (1777) and first used the letter i to represent V-1.C. Wessel (1799) gave a geometrica
interpretation of complex numbers.

As aresult, mathematicians introduced the use of a special symbol—theimaginary unit i that isequal toi =V -1 :
i?=-1

In the 19th century the conception and theory of complex numbers was basically formed. A. Buee (1804) indepen-
dently came to the idea of J. Wallis about geometrical representations of complex numbersin the plane. J. Argand

(1806) introduced the name modulus for 4/ X2 + y? , and published the idea of geometrical interpretation of com-

plex numbers known as the Argand diagram. C. Mourey (1828) laid the foundations for the theory of directional
numbersin alittle treatise.
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The imaginary unit ¢ was interpreted in a geometrical sense as the point with coordinates {0, 1} in the Cartesian
(Euclidean) x, y plane with the vertical y axis upward and the origin {0, 0}. This geometric interpretation establishes
the following representations of the complex number z through two real numbers x and y as:

Z=X+iy ;XeRAYyeR<=(X,Y)
z=rco(@p)+irsin(¢)/;rcRAr>0A¢eR,

wherer = 4/ X2 + y? isthe distance between points {x, y} and {0, 0}, and ¢ is the angle between the line connecting
points {0, 0} and {x, y} and the positive x axis direction (the so-called polar representation).

Thelast formulalead to the following basic relations:

r=1x+y
X == CO3( @)

y=rsin(¢)

¢ = tan’l(x) /i x>0,
X

which describe the main characteristics of the complex number z == x + i y—the so-called modulus (absolute value)
r, thereal part x, theimaginary part y, and the argument ¢.

The Euler formula e?? == cos(¢) + i Sin(¢) allows the representation of the complex number z, using polar coordi-
nates (r, ¢) inthe more compact form:

z=reé?/;reRATr=0A¢ <0, 2n).

It also allows the expression of the logarithm of a complex number through the formula:
log(z)==log(r)+i¢ /;reRAr>0A¢ cR.

Taking into account that the cosine and sine have period 27, it follows that ¢ ¢ has period 2 i:
/02l == ¢l OF2D = cog(¢p + 2 7) + i SIN(@ + 2 7) == COS(P) + i SiN(¢) == &'

Generically, the logarithm function log (2) is the multivalued function:

log(2) ==log(n) +i(¢p+2nk) /;reRAT>0ApeR ANke Z.

For specifying just one value for the logarithm log(z) and one value of the argument ¢ for a given complex number
2, therestriction — < ¢ < m isgeneraly used for the argument ¢.
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C. F. Gauss (1831) introduced the name "imaginary unit" for V-1, suggested the term complex number for

X + iy, and called x? + y? the norm, but mentioned that the theory of complex numbers is quite unknown, and in
1832 published his chief memoair on the subject. A. Cauchy (1789-1857) proved several important basic theorems
in complex analysis. N. Abel (1802—1829) was the first to widely use complex numbers with well-known success.
K. Weierstrass (1841) introduced the notation |z for the modulus of complex numbers, which he called the absolute
value. E. Kummer (1844), L. Kronecker (1845), Scheffler (1845, 1851, 1880), A. Bellavitis (1835, 1852), Peacock
(1845), A. Morgan (1849), A. Mobius (1790-1868), J. Dirichlet (1805-1859), and others made large contributions
in developing complex number theory.

Definitions of classical constants and the imaginary unit

Classical constants and the imaginary unit include eight basic constants: golden ratio ¢, pi 7, the number of radians
in one degree °, Euler number (or Euler constant or base of natural logarithm) e, Euler-Mascheroni constant (Euler
gamma) y, Catalan number (Catalan's constant) C, Glaisher constant (Glaisher-Kinkelin constant) A, Khinchin
constant (Khintchine's constant) K, and the imaginary unit i. They are defined by the following formulas:

1

=~ (145 ) = efen@)

n1
y=Ilim [ZE—Iog(n)]

k=1

0 (_l)k

k=0 (2k+1)2
A (1 1)
= e&Xp| — — "(—
p P =D

00 1 Iogz(k)
K= (l + )
kel k(k+2)

i=v-1.

The number 7 isthe ratio of the circumference of acircle to its diameter.

Connections within the group of classical constants and the imaginary unit and with
other function groups

Representations through functions
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The classical constants ¢, 7, °, e, v, C, A, and the imaginary unit i can be represented as particular values of

expressions that include functions (Fibonacci F,, algebraic roots, exponential and inverse trigonometric functions,
complete eliptic integrals K(z) and E(2), dilogarithm Li»(2), gamma function I'(2), hypergeometric functions plfq,
pFq, Meijer G function G’g‘g polygamma function y(z), Stieltjes constants y,,, Lerch transcendent ®(z, s, @), and

Hurwitz and Riemann zeta functions £ (s, a) and £(9)), for example:

¢ n ° e

- %(\/— Foi5F2-4 ) 7= 4(atan”(3) - tan" 55)) o= & (atan (3] -t ) e = oFo

p=271 (\/E F, + 7= 4tan‘1( l) + 4tan‘l(l) == °== % (tan‘l(%) + tan‘l(é)) = e = oFyg!
= (

\/m)w \ 8tan’1( )+4tan ( ) = % 2tan’1(%)+tan’1(%)) = 1

4tan’1(2)+4tan (5)+4tan’l(%) = (tanfl(%)+tan*1(%)+tan*1(§))

veRAv>0
¢ == exp (csch™(2)) n= (Gtan‘l(l) + 2tan‘l(537) + °= % (6 tan~t (%) +2tant (5%) + e = Ggy
ta*(5) tan* (5)
q&::(z;zz—z—l);1 7 =4tan” ( )+4tan (5)+ °== :—5(tan‘1(%)+tan‘1(é)+ e=¢e?/
atan”(3) tan*(5))
n==4(6tan-1(1)+2tan—l(5i7) o=~ (Gtan‘l(%)+2tan‘1(5i7) log (e)
+tan?(35)) +tant (5))
r=88tan (L) +8tan Y L)-  |o= 1 (22tean(Z)+2tan Y ) -
20tan’1( 1393) 4Otan’1(11018) Stan (1393) 10tan’1(11018))
== 48tan’l( )+ 12tan’1( )+ °=1 (than’l( )+3tan ( )+
20tan-1( )+ Rtan? (3(1)7) 5tan‘1( )+ 8tan” (3(1)7))
r=aen(Z) e (TR 5 o= g (e (F) e (S0
peN* AqeN* peN*AgqeN*
7= 2K(0) = 2E(0) e
ﬂ::l"(%)z =V6Liy(1) o %r(l)z_ = V6Li1)

Representationsthrough related functions

The four classical constants ¢, «, °, and e and the imaginary unit i can sometimes be represented through other
classical constants and the imaginary unit by formulas such as the following:
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¢ T ° e 4
¢ ¢::2cos(§) ¢ == 2c05(36°) bp=e5+e 5 p=e5+e 5
1
g2 = L seo(72°)
=2 Sec( 5 ) 2
1 7 = = csc(18°)
¢ =3 ) ?
2i
x 7T==5003_l(g) n==180° e=i n=—ilog(-1)

3 . . ﬂ
n::—5i|og(%(¢+m/4—¢2 )) 22,”7:_ ! ”"2”'09(1”)

- 2i

gnik:: (_1)k /’ kez |e= i

eri=-1
eZM' =1
= (1K)
o |o_- 1 oslf? o__ T —90°ik __ ji °— L |og(-
T 3% cos 3 180 € =t 180 0g(—
6180%' =1 1 1-i
) 1 ) o__ 1 o
°==—;_5|09(§ (¢+u\/4—¢2 )) e30°%i —— 1 90”09(1”
o-90%ik __ i
o180% _ _q
£360°i __ 1
elBODE'k —— (_1)k
2i 2i
e e=i Xk K kez e=i
=1 0% = 1 et=-1
ezm' =1 eSBO"i =1 62” =1
@”k _ (_1)k /kez £180°ik (_1)k /; kez em’k — (—l)k /;
i PR n P 180° ﬂ—zn—l —e
T ) T log-1) o
et=-1
eZ;rn’ =1

k= (-1 kez

The best-known properties and formulas for classical constants and the imaginary unit

Values
first 50 digits number of digitscomputedin year
¢ | 1.6180339887498948482045868343656381177203091798057... 2002, near 3141000000 digits
7 | 3.1415926535897932384626433832795028841971693993751. ... December 2002, near 1241100000000 digits
° 10.017453292519943295769236907684886127134428718885417... | December 2002, near 1241100000000 digits
e |2.7182818284590452353602874713526624977572470936999... 2003, near 50100000000 digits
v | 0.57721566490153286060651209008240243104215933593992... | December 2006, near 116580000 digits
C |0.91596559417721901505460351493238411077414937428167... 2002, near 201000000 digits
A | 1.2824271291006226368753425688697917277676889273250. .. December 2004, near 5000 digits
K | 2.6854520010653064453097148354817956938203822939944. .. 1998, near 110000 digits

Theimaginary unit i satisfies the following relation:
i2==-1

Evaluation of specific values
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For evaluation of the eight classical constants ¢, 7, °, e, ¥, C, A, and K, Mathematica uses procedures that are
based on the following formulas or methods:

basicformulaor method
¢ | Karatsuba's modifications of Newton's methods for evaluations vz (because ¢ = % (1 +V5 ))

(1% (6K)! (545140134 k+13591409)

1
7| -=123%
4 K 3lo! (640320%) 2

o [0 &
180

; n 1
e |e=limy (Zk:o g)

. X log
‘y 'I/ == ||mx—>oo Zk OZ| =1 I(k') 2
(k'>2
2
C Iog(\/_ + 2) IRy —— (2k>’(2k+1)2
AlA=lim_e exp[ log(2 1) —

=0

2% (21%'098(10”11 Z:2[n|098<1o>+1]- . (Z ~[nlogy(10+1] ( I[(n logg(10) + 1] ]_ 2[n|oga(10)+l])] 1 ]

[n IogA(lO)J+1 1

=

K | K = limy, exp 2 (z@m - 1)22"““ -)

log(2)

Theformulafor 1/ is called Chudnovsky's formula.
Analyticity

The eight classical constants ¢, , °, e, ¥, C, A, and K are positive real numbers. The constant ¢ is a quadratic
irrational number. The constants r, ©, and e areirrational and transcendental over Q. Whether C and y are irrational

isnot known.
The imaginary unit i is an algebraic number.

Seriesrepresentations

Thefive classical constantsz, e, ¥, C, and K have numerous series representations, for example, the following:

) (_1)k 4

ﬂ:4k§2k+1:_zm( i

V2 o

-log2) V3

1 +1
7 =2log(2) +4Z—1( %]

koo K+

i 1 ( 2 1 1 ) ® (= 1)k( 2 1 2 ]
n= ) — = + +
16% 8k+4 8k+5 8k+6 8k+1 o 4 \4k+2 4k+3 4k+1

F2k+1)

5 X 2k 1
ﬂ'::Z\/EZ(k )szkJrllﬁ 4Ztan [
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00 3k_1
7r==ZT§(kJr 1)
k=1
© (2k-1)!! © ki o) @2k
T == 22 —_— == 2 =6
o Ck+1 k! i K2 (2k)! oo Qk+ 1112242 (k1 1)
00 n
m=ap+b —
”;‘(M)
k
n |1 2 3 4 5 6 7 8 9 10
33 18y3 135y3 | as2y/3 | 24343 | 2381443 | 42795y/3 | 235515643 | 4831447543 365306274/
& |~ T s Y T 119 T er T 6565 T 11797 | 649231 ~ 13318583 ~ T 10070196¢
9 27 8L 8L 81 243 81 729 2187 2187
b 2 3 E\/? ﬂ\/? ﬁ\/? ﬁﬁ 13130\/3 23594\/3 1298462\/3 26637166\/5 201403930\[
= ni|l 2 3 4 5 ...|n/ineNt
oS 1 2n
T ==Cp Z— /i - kS
ke cn | V6 [V3 10¥4 | V3 357° |3¥85Y4 1418 | /3 385Y% (—(‘” (2”)‘)2”
= A 22n—lBZn
K L
& (D))
T==Cp
; k2n
ni|l 2 3 4 5 ...|n/;neNt

@ |2V3 2(5)1/4‘/3 (§)1/625/6‘/§ Z(L)l/833/851/4 (%)Mozgmﬁ [L‘Z"")]i

31 127 - 1
22n-1 BZn(g

. 1 i nil 2 3 4 5 ..|n/;neN*
T==Cp Z—Z , 14 1/6 14 (70 1/8 35 1/10 /5 (71)n—1 2@2n)! %
S 2k+ 12" c|2V2 |26% |215"° |23%(2) T [2(2) 5| (W)
- 2n
o (<) = |n|1|2 3 4 5 .. In/ineNt
T ==Cp 27] ) 1/5 17 1/9 n-12n —
2n-1 2/3 3 5 5 5/7 2/7 7 8/9 ~2/9 (=)™ 2e"(2n-2)!'\ 2n-1
0 (2k+ 1" o |4 |22 2(3) 2% 2(5) 27T (2(55) 20 | (S
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e ¥ C K
| o lood - 1>klog(k> 2 _
=20 Y= —5 |Og(2) 22 C=2%l0 —— (4k+1)2 .y K= eXp(,Og(z) iz 1ot
o 2k+1 0 1
€= Sio ot y=Yo(logl-5)+1)+1 [C=F-2% e K = exp(l0g(2) + 5o
kel o (DK 1) _@k+D? . 1 o 1
e=2520 ot |y=3 Pk 2 10g(2) - & o 2 K = ey T2
k+1 _ 00 e’(k) 1 kD2 _ 1 2
3 X y=1-%, 5 = 3 1002) — Mo i K = expl i (log”2
3412 _ oo SR2k+D) 7 o (DK — 1 (=1
= 20 Giean @k+ 1) y=109(2) - &y 4 2k+1) = 2100(2) + 2o 357 Wk+ D +) K= exp(l 2) ( 6 2
o (BK2+1 7 o (=DF 3 1 oo 4G
€==2il0 (3,(; = 71002 + X0 57 (l/’(k+ 5) + )’) K= exp(w ka1 —
2 oo (ke3)kmod2 o ki@2k+1)
= £ X% Sz C=1-%, o = s E ¢+ 1. 3)
log(A) = Z Z( 1)“1( . )(j +1)2log(j + 1) + E
k 0 k+14 J 8
Product representations
Thefour classical constants r, e, y, and A can be represented by the following formulas:
T e ¥ A
-2 4K2 - - A=
T=cll1 Gip 2 €= = =
2—k-1 1
o |1 ki1 k)2 ot (M)
2Hk_0[w/7r(2+2k+1) 2 F(z vz ) ] log| [Tnzo [nﬂ_o(k+ D (k)
1
- 21711 (2k+2)+2 5 _
7=2llic zsec( k) e =2l leo (2k+2i+1) -
311ico SEC( 12 zk) [l—loo
k=1
(-1l s
n==2en§°=l(1+§) e=TI. K *
0 -1 .
61T (1-m?)  /ipcelP

Integral representations

Thefive classical constants 7, (and V7 ), y, C, A, and K have numerous integral representations, for example:
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T y C A
oo 1 oo 1 (oo g2t 27/36 2 rlj2
=2 o adt '))’::—j(; e thg(t)dt == 2b md/t == 5 exp(§f0 |Ogl
1 1
m=4] V1-12 dt|y= —J log(~log(t)) dt fo tsech(t) dt == zﬁ) AL
1 1 1 1 1|09(t)
m=2 dt |y=—1log|log|=||dt C=- dt = Iog[ )dt
fo m fO ( (t)) 0 241 “Jo e \/;
1
00 1e T 2
n=2e, j‘;f” at |y=-f t(l‘_t)‘ dt =-2 ﬁ;‘log(zsn(t))dt = 2 [;*log(2 cos(t)) d't
11t It 2 z
= L ——dt C=—fy*log(tan (1)) dt = [;*log(cot(t)) d't
cof 1 1 1 1 z T
y=k (- 5)at C= [ =L at= [Zsnh (sin() dt
y=2f"¢ C= ﬁfsjnh*l(cos(t))dt:: Jo? csch™ (cscit)) dt
B a —c'tﬂ z —
y = i—ﬁ [Te—dt/; |C= [Fesch™ (sec(t) dt
a>0AB>0
[T te at C=1 O“ﬁ dt= 3 ['K(?)at
1 co t 3 E t P
Y= E +2](; 7('(%1)(@2“71) dt C—— Zj(; Sn—(t)dt+ g |Og(2+\/§)
00 1 1 B 71
="} (costt - 1) at =T [t~ L) seciryat
1 1) 5 _ 3 tesc(t) T
y=, (m + E)dt C= [ =0 dt-2log(2)
oy 1 1 1 1I09(1t)
y“fo (Iog(l—t) + t)dt Iog(2) 2f0 \/—(m)
Iog(2) fllog(l Y 4t
" n|{1{2|3|4|5 |6 |...|n/;neN*
> SN
= Cnf dt/, 8 384 | 40 [ J( K (n-2k)"?
0 tn Cn 2 2 5 3 E E /nzko —k'(n k)'

Thefollowing integral is called the Gaussian probability density integral:

VT =2 [

Thefollowing integrals are called the Fresnel integrals:
Vi =2v2 [sin(?)dt

Vi =2V2 [cost?)dt

Limit representations

The six classical constants ¢, 7, e, v, A, and K have numerous limit representations, for example:
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é n e Y
N ; 4n 2ny? ; 1z ; 1
d=\l 1+ 1+ V1+V1+.. m=limp,e |2 n n e=1lim,q(z+1) v =limg,q ({(s)—;
. . 4 . . 1
¢ ==liMse0 2 /; 7 == liMhse n—zz‘,ﬂzox/ n? — k2 €= liMy e Z'% 7 == liMsse0 (s—r(g’
2=y 1+z o=
. Fy . Vi | ynoe . 24k . -
¢ =limy e 7= 4liMyse le(:l J ”n e =limp. [To, :Z—J_rk y=limepe (32, (K
. 24n+1 14 i K /n .
7 ==liMn, P e==limy,q (ZZLO ﬁ) ¥ ==liMpe (Hno1 —
T 22m? T LA il T oaxy
7= 1My, @n+1) @n-D112 e=1img.. ((z—l)z‘l (z—2)2-2) 7 =limgo (li(e®)
log(a)) —
T n12 (n+ 12700 T 4z T
ﬂ——llmn—wo W E——“mz_)oo m ’)}’——llmn_)oo |Og(pn)
n log(py)
i1 P—1
1 n ([n
. : n k2 T M \on - T Zkﬂ([ﬂ_
w==16liMyse0 (N+ DT, e e=lim,e (]‘[k=l pk)p /; 7 = liMn e -
Pn == prime(n)
y=limy_,g (Ei(log(x
Ei(log(x + 1))
Iog(l - %) +7

Continued fraction representations

The four classical constants ¢, «, e, and C have numerous closed-form continued fraction representations, for

example:
1
d=1+Ky(l, DT =1+ 1
14 —mM8M—
1
1+
1
1+
1+
2 *© 1
m=3+K((2k-1)",6), =3+ 5
6+
25
6+
49
6+
81
6+ ——
121
6+

6+...
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1 1
2 e — (1K) (I _ (1K k™ 6
3+ Ki(—(k= (=D (k= (=D + 1), 2+ (-1)%), 3-
2
1-
20
3-
12
1_
42
3-
30
1— ——
3_
4 - 1
—=1+K(K, 2k+1), =1+
T 4
3+
9
5+
16
7+
25
9+
36
11+
13+...
2(k+ 1))z (V™) 1
e==2+Ky 1,[ ] =2+ 1
1 1+
1
2+
1
1+
1
1+
1
4+
1+...
1 2
e=1+ =2+ 3
Kk, K
k( )l 24
4
3+
5
4+
6
5+
7
6+
7+
2 2
e=1l+ ———— =1+
1+K(1, 4k+2)7 1
1+
1
6+
1
10+
1
14+
1
18+
1
22 +
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1 1/2
C::l— ==1— 4
kel [\ (k—l)modzoo
2(3+Kk((2{ . J) , 3 1 3+ .
1+
16
3+
16
1+
36
3+
36
1+
3+
1 1 1 1/2
== — + .= — +
2 ok (k-1 k+ 12+ 2(1+ ) kk+2), &) 2L L
+ 2K 35 (D -1 k+ D7+ 2(1+ DYk k+2), 5, ~+ 3 .
-+
2 1 4
-+
2 1 6
-+
2 1 9
-+
2 1 12
-+
2 1
—+..
2

Functional identities

The golden ratio ¢ satisfies the following special functional identities:

> -¢p-1=0

1
¢==l+;::1+ =1+ =1+ = ...

¢n — ¢)n—1 +¢n—2 /, ne N+
G = gt W) o g™ g

Complex characteristics

The eight classical constants (¢, 7, °, e, ¥, C, A, and K) and the imaginary unit i have the following complex

characteristics:

Abs |[Arg Re Im Conjugate | Sign
£11l=¢|Arg&)=0|Re(@) =¢|Im&)=0|E=¢ sgné)=1|/éel¢, 7 ° ey, C AK)
i |lil=1|Arg()="7|Re@=0 |Im@) =1 |i=—i son (i) == i

Differentiation

Derivatives of the eight classical constants (¢, 7, °, e, ¥, C, A, and K) and imaginary unit constant i satisfy the

following relations:
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% (in classical sense) %(infractional sense)
£l5= i iEelp m ey, CAK)
|&=0 % = it
I ntegration

Simple indefinite integrals of the eight classical constants (¢, 7, °, e, ¥, C, A, and K) and imaginary unit constant i
have the following values:

[f@dz | [ f@dz

¢|[edz=¢z| [z ¢az="| ;g7 e, 7. C A K)

a

i |[idz=iz | (7 idz="Z

Integral transforms

All Fourier integral transforms and Laplace direct and inverse integral transforms of the eight classical constants
(¢, m, °, e, y, C, A, and K) and the imaginary unit i can be evaluated in a distributional or classical sense and can

include the Dirac delta function:

f@® | RO FUIOI@ Falf®l (@ Fsi[f(®]1(2 LIfOI@  [L{

¢ |RE1@=V2r £6@ |F U@ =21 £60) | Falél @ = ] €62 | Fslé] @ \/j loao==% |

i |All@=V2r is@ |FU@=V2r ié@ |Falil@=+} id@ |F=lil@ \/? Clolil@== |

[ éelp, 7 ° ey C, A K}
Inequalities
The eight classical constants (¢, 7, °, e, ¥, C, A, and K) satisfy numerous inequalities, for example:

31
1+ —<¢p<l+—
5 50

10 1
3+ —<n<3+—
71 7

1 1
60 57
7 3
2+ —<e<2+ —
10 4
4y of



http: //functions.wolfram.com 20

1
1+ -<A<1l+—
4 10

13 7
2+ —<K<2+—.
10

Applications of classical constants and the imaginary unit

All classical constants and the imaginary unit are used throughout mathematics, the exact sciences, and engineering.
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